日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=bax(a>0,且a≠1,b∈R)的圖象經(jīng)過點A(1,6),B(3,24).
          (1)設(shè)g(x)= ,確定函數(shù)g(x)的奇偶性;
          (2)若對任意x∈(﹣∞,1],不等式( x≥2m+1恒成立,求實數(shù)m的取值范圍.

          【答案】
          (1)解:根據(jù)題意得: a=2,b=3.

          ∴f(x)=32x;

          故g(x)=

          g(x)定義域為R;

          ∵g(﹣x)= ;

          = = ;

          =﹣g(x);

          所以,g(x)為奇函數(shù)


          (2)解:設(shè)h(x)= = ,則y=h(x)在R上為減函數(shù);

          ∴當x≤1時,g(x)min=g(1)=

          ∵h(x)= ≥2m+1在x≤1上恒成立:

          ∴g(x)min≥2m+1m≤ ;

          故m的取值范圍為:(﹣∞, ]


          【解析】(1)將點的坐標代入函數(shù)解析式,即可求得f(x)與g(x),在利用奇偶性定義判斷g(x)是奇函數(shù);(2)對任意x∈(﹣∞,1],不等式( x≥2m+1恒成立 即可轉(zhuǎn)化為: ≥2m+1在x≤1上恒成立;
          【考點精析】通過靈活運用函數(shù)的奇偶性,掌握偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱即可以解答此題.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在正方體ABCD﹣A1B1C1D1中,異面直線A1D與D1C所成的角為(
          A.30°
          B.45°
          C.60°
          D.90°

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)的定義域為R,且f(x)不為常值函數(shù),有以下命題:
          ①函數(shù)g(x)=f(x)+f(﹣x)一定是偶函數(shù);
          ②若對任意x∈R都有f(x)+f(2﹣x)=0,則f(x)是以2為周期的周期函數(shù);
          ③若f(x)是奇函數(shù),且對于任意x∈R,都有f(x)+f(2+x)=0,則f(x)的圖象的對稱軸方程為x=2n+1(n∈Z);
          ④對于任意的x1 , x2∈R,且x1≠x2 , 若>0恒成立,則f(x)為R上的增函數(shù),
          其中所有正確命題的序號是

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列四組中,f(x)與g(x)表示同一函數(shù)的是(
          A.f(x)=x,
          B.f(x)=x,
          C.f(x)=x2 ,
          D.f(x)=|x|,g(x)=

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)是定義在R上的偶函數(shù),且f(x)在(﹣∞,0]上單調(diào)遞減,則不等式f(lgx)>f(﹣2)的解集是(
          A.( ,100)
          B.(100,+∞)
          C.( ,+∞)
          D.(0, )∪(100,+∞)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】分別過橢圓E: =1(a>b>0)左、右焦點F1、F2的動直線l1、l2相交于P點,與橢圓E分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率分別為k1、k2、k3、k4 , 且滿足k1+k2=k3+k4 , 已知當l1與x軸重合時,|AB|=2 ,|CD|=
          (1)求橢圓E的方程;
          (2)是否存在定點M,N,使得|PM|+|PN|為定值?若存在,求出M、N點坐標,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】現(xiàn)有若干(大于20)件某種自然生長的中藥材,從中隨機抽取20件,其重量都精確到克,規(guī)定每件中藥材重量不小于15克為優(yōu)質(zhì)品.如圖所示的程序框圖表示統(tǒng)計20個樣本中的優(yōu)質(zhì)品數(shù),其中表示每件藥材的重量,則圖中①,②兩處依次應(yīng)該填的整數(shù)分別是____________

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=xln(x+ (a>0)為偶函數(shù).
          (1)求a的值;
          (2)求g(x)=ax2+2x+1在區(qū)間[﹣6,3]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D是BC的中點.
          (1)求證:A1B∥平面ADC1;
          (2)若AB⊥AC,AB=AC=1,AA1=2,求幾何體ABD﹣A1B1C1的體積.

          查看答案和解析>>

          同步練習冊答案