日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2+2x+alnx(a∈R),
          (1)當a=-4時,求f(x)的最小值;
          (2)若函數(shù)f(x)在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)a的取值范圍;
          (3)當t≥1時,不等式f(2t-1)≥2f(t)-3恒成立,求實數(shù)a的取值范圍.
          解:(1)f(x)=x2+2x-41nx(x>0),f′(x)=2x+2-,
          當x>1時,f′(x)>0,當0<x<1時,f′(x)<0,
          ∴f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
          ∴f(x)min=f(1)=3.
          (2),
          若f(x)在(0,1)上單調(diào)遞增,則2x2+2x+a≥0在x∈(0,1)上恒成立
          在x∈(0,1)上恒成立,
          令u=-2x2-2x,x∈(0,1),則,
          ∴a≥0;
          若f(x)在(0,1)上單調(diào)遞減,則2x2+2x+a≤0在x∈(0,1)上恒成立;
          綜上,a的取值范圍是(-∞,-4]∪[0,+∞).
          (3)(2t-1)2+2(2t-1)+aln(2t-1)≥2t2+4t+2alnt-3恒成立,
          a[ln(2t-1)-21nt]≥-2t2+4t-2a[ln(2t-1)-lnt2]≥2[(2t-1)-t2],
          當t=1時,不等式顯然成立;
          當t>1時,t2-(2t-1)=t2-2t+1=(t-1)2>0t2>2t-1lnt2>ln(2t-1)
          在t>1時恒成立,
          ,即求u的最小值,
          設(shè)A(t2,lnt2),B(2t-1,ln(2t-1)),,
          且A、B兩點在y=lnx的圖象上,
          又∵t2>1,2t-1>1,
          故0<kAB,
          ,故a≤2,
          即實數(shù)a的取值范圍為(-∞,2]。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
          (1)求m的值,并確定f(x)的解析式;
          (2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

          已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

          已知函數(shù)f(x)、g(x),下列說法正確的是( )
          A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
          B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
          C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
          D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

          查看答案和解析>>

          同步練習(xí)冊答案