【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構成.小垣用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)加長或縮短.設單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測量,得到如下數(shù)據(jù):
(1)根據(jù)表中數(shù)據(jù)的規(guī)律,補全以下表格,并求出y關于x的函數(shù)表達式;
單層部分的長度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長度y(cm) | … | 73 | 72 | 71 | ______ | … | ______ |
(2)根據(jù)小垣的身高和習慣,挎帶的長度為120cm時,背起來正合適,請求出此時單層部分的長度.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,D是邊AB的中點,E是邊AC上一動點,連接DE,過點D作DF⊥DE交邊BC于點F(點F與點B、C不重合),延長FD到點G,使
,連接EF、AG,已知
,
,
.
(1)試說明;
(2)請你連接EG,設,
,求y關于x的函數(shù)關系式;
(3)當是以BF為腰的等腰三角形時,直接寫出AE的長,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(0,3),(4,3).
(1)求b、c的值.
(2)開口方向 ,對稱軸為 ,頂點坐標為 .
(3)該函數(shù)的圖象怎樣由y=x2的圖象平移得到.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,∠B=15°,邊AB的垂直平分線交邊BC于點E,垂足為點D,取線段BE的中點F,聯(lián)結(jié)DF.求證:AC=DF.(說明:此題的證明過程需要批注理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關系.
(1)如圖1,若AB∥CD,點P在AB、CD內(nèi)部,∠B=50°,∠D=30°,求∠BPD.
(2)如圖2,將點P移到AB、CD外部,則∠BPD、∠B、∠D之間有何數(shù)量關系?(不需證明)
(3)如圖3,寫出∠BPD﹑∠B﹑∠D﹑∠BQD之間的數(shù)量關系?請證明你的結(jié)論.
(4)如圖4,求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是邊BC上的點(與B,C兩點不重合),過點D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點,下列說法正確的是( )
A. 若AD⊥BC,則四邊形AEDF是矩形 B. 若BD=CD,則四邊形AEDF是菱形
C. 若AD垂直平分BC,則四邊形AEDF是矩形 D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com