日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為了提高學(xué)生的漢字書寫能力,某學(xué)校連續(xù)舉辦了幾屆漢字聽寫大賽,今年經(jīng)過層層選拔,確定了參加決賽的選手,決賽的比賽規(guī)則是每正確聽寫出1個漢字得2分,滿分是100分,下面是根據(jù)決賽的成績繪制出的不完整的頻數(shù)分布表、扇形統(tǒng)計圖和頻數(shù)分布直方圖.

          類別

          成績x

          頻數(shù)(人數(shù))

          A

          50x60

          5

          B

          60x70

          7

          C

          70x80

          a

          D

          80x90

          15

          E

          90x100

          10

          請結(jié)合圖表完成下列各題

          1)表中a的值為   ,并把頻數(shù)分布直方圖補充完整;

          2)學(xué)校想利用頻數(shù)分布表估計這次決賽的平均成績,諧你直接寫出平均成績;

          3)通過與去年的決賽成績進行比較,發(fā)現(xiàn)今年各類人數(shù)的中位數(shù)有了顯著提高,提高了15%以上,求去年各類人數(shù)的中位數(shù)最高可能是多少?

          4)想從A類學(xué)生的3名女生和2名男生中選出兩人進行培訓(xùn),直接寫出選中1名男生和1名女生的概率是多少.

          【答案】113,圖見解析;(278.5;(3)去年各類人數(shù)的中位數(shù)最高可能是8;(4 .

          【解析】

          1)用E點的頻數(shù)除以該組的頻率得到調(diào)查的總?cè)藬?shù),然后計算a的值,最后補全頻數(shù)分布直方圖;
          2)取組中值表示各組的平均數(shù),然后根據(jù)加權(quán)平均數(shù)的計算方法求解;
          3)根據(jù)中位數(shù)的定義得到今年各類人數(shù)的中位數(shù)為10,然后計算10÷1+15%≈8.7,利用人數(shù)為整數(shù)確定去年各類人數(shù)的中位數(shù)最高;
          4)畫樹狀圖展示所有20種等可能的結(jié)果數(shù),找出選中1名男生和1名女生的結(jié)果數(shù),然后根據(jù)概率公式求解.

          解:(1)調(diào)查的總?cè)藬?shù)為:10÷50,

          所以a5057151013;

          故答案為13

          頻數(shù)分布直方圖為:

          2)平均成績=5×55+7×65+13×75+15×85+10×95)=78.5;

          3)今年各類人數(shù)的中位數(shù)為10

          10÷1+15%≈8.7,

          而人數(shù)為整數(shù),今年各類人數(shù)的中位數(shù)比去年提高了15%以上,

          去年各類人數(shù)的中位數(shù)最高可能是8;

          4)畫樹狀圖為:

          共有20種等可能的結(jié)果數(shù),其中選中1名男生和1名女生的結(jié)果數(shù)為12,

          所以選中1名男生和1名女生的概率=

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數(shù)相同.

          求甲、乙兩種商品的每件進價;

          該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】亞洲文明對話大會召開期間,大批的大學(xué)生志愿者參與服務(wù)工作.某大學(xué)計劃組織本校全體志愿者統(tǒng)一乘車去會場,若單獨調(diào)配36座新能源客車若干輛,則有2人沒有座位;若只調(diào)配22座新能源客車,則用車數(shù)量將增加4輛,并空出2個座位.

          (1)計劃調(diào)配36座新能源客車多少輛?該大學(xué)共有多少名志愿者?

          (2)若同時調(diào)配36座和22座兩種車型,既保證每人有座,又保證每車不空座,則兩種車型各需多少輛?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料,按要求解答問題:

          閱讀理解:若p、q、m為整數(shù),且三次方程 有整數(shù)解c,則將c代入方程得:,移項得:,即有: ,由于cm都是整數(shù),所以cm的因數(shù).

          上述過程說明:整數(shù)系數(shù)方程的整數(shù)解只可能是m的因數(shù).

          例如:方程中-2的因數(shù)為±1±2,將它們分別代入方程進行驗證得:x=2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.

          解決問題:

          ①根據(jù)上面的學(xué)習(xí),請你確定方程的整數(shù)解只可能是哪幾個整數(shù)?

          ②方程 是否有整數(shù)解?若有,請求出其整數(shù)解;若沒有,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為ab、c.若|a﹣b|=3,|b﹣c|=5,且原點OAB的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?( 。

          A. A的左邊 B. 介于A、B之間 C. 介于BC之間 D. C的右邊

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在菱形ABCD中,點PBC邊上一點,連接AP,點EFAP上的兩點,連接DEBF,使得∠AED=∠ABC,∠ABF=∠BPF

          求證:(1ABF≌△DAE;

          2DEBF+EF

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某貨運公司有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨29噸,2輛大貨車與6輛小貨車一次可以運貨31噸.

          I.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸;

          Ⅱ.目前有46.4噸貨物需要運輸,貨運公司擬安排大小貨車共10輛,全部貨物一次運完.其中每輛大貨車一次運貨花費500元,每輛小貨車一次運貨花費300元,請問貨運公司應(yīng)如何安排車輛最節(jié)省費用?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,反比例函數(shù)和一次函數(shù)y=kx-1的圖象相交于Am,2m),B兩點.

          1)求一次函數(shù)的表達(dá)式;

          2)求出點B的坐標(biāo),并根據(jù)圖象直接寫出滿足不等式x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線yax2+bx+5經(jīng)過A(5,0),B(4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD

          (1)求該拋物線的表達(dá)式;

          (2)P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標(biāo)為t

          ①當(dāng)點P在直線BC的下方運動時,求△PBC的面積的最大值;

          ②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案