日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2000•紹興)如圖,梯形ABCD中,AD∥BC,∠ABC=Rt∠,對角線AC⊥BD于P點.已知AD:BC=3:4,則BD:AC的值是( )

          A.
          B.
          C.
          D.
          【答案】分析:由AD∥BC,可推△ADP∽△CBP,由相似三角形的性質(zhì)可得,所以AP=AC,PC=AC,BP=BD,因∠ABC=90°,對角線AC⊥BD于P,利用△APB∽△BPC得到PB2=PA•PC,即可求解.
          解答:解:∵AD∥BC
          ∴△ADP∽△CBP


          ∴AP=AC,PC=AC,BP=BD
          ∵∠ABC=90°,對角線AC⊥BD于P
          ∴△APB∽△BPC
          ∴PB2=PA•PC


          故選A.
          點評:本題需仔細分析題意,結(jié)合圖形,利用相似三角形的性質(zhì)即可解決問題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

          (2000•紹興)如圖,以⊙O兩條互相垂直的直徑所在直線為軸建立平面直角坐標(biāo)系,兩坐標(biāo)軸交⊙O于A,B,C,D四點,點P在弧CD上,連PA交y軸于點E,連CP并延長交y軸于點F.
          (1)求∠FPE的度數(shù);
          (2)求證:OB2=OE•OF;
          (3)若⊙O的半徑為,以線段OE,OF的長為根的一元二次方程為x2-x+m=0,求直線CF的解析式;
          (4)在(3)的條件下,過點P作⊙O的切線PM與x軸交于點M,求△PCM的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2000年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2000•紹興)如圖,以⊙O兩條互相垂直的直徑所在直線為軸建立平面直角坐標(biāo)系,兩坐標(biāo)軸交⊙O于A,B,C,D四點,點P在弧CD上,連PA交y軸于點E,連CP并延長交y軸于點F.
          (1)求∠FPE的度數(shù);
          (2)求證:OB2=OE•OF;
          (3)若⊙O的半徑為,以線段OE,OF的長為根的一元二次方程為x2-x+m=0,求直線CF的解析式;
          (4)在(3)的條件下,過點P作⊙O的切線PM與x軸交于點M,求△PCM的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

          (2000•紹興)如圖,△ABC中,∠ACB=Rt∠,CD⊥AB于點D,若BD:AD=1:4,則tan∠BCD的值是( )

          A.
          B.
          C.
          D.2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

          (2000•紹興)如圖,以O(shè)B為直徑的半圓與半圓O交于點P,A、O、C、B在同一條直線上,作AD⊥AB與BP的延長線交于點D,若半圓O的半徑為2,∠D的余弦值是方程3x2-10x+3=0的根,則AB的長等于( )

          A.
          B.
          C.8
          D.5

          查看答案和解析>>

          同步練習(xí)冊答案