日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,△ABC中,AB=AC,D為BC邊的中點(diǎn),F(xiàn)為CA的延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)F 作FG⊥BC于G點(diǎn),并交AB于E點(diǎn),試說(shuō)明下列結(jié)論成立的理由:
          (1)AD∥FG;
          (2)△AEF是等腰三角形.

          解:(1)∵AB=AC,D是BC的中點(diǎn),
          ∴AD⊥BC,
          ∵FG⊥BC,
          ∴AD∥FG.

          (2)∵AB=AC,D是BC的中點(diǎn),
          ∴∠BAD=∠CAD,
          ∵AD∥FG,
          ∴∠F=∠CAD,∠AEF=∠BAD,
          ∴∠F=∠AEF,
          ∴AF=AE,
          即△AEF是等腰三角形.
          分析:(1)根據(jù)等腰三角形的性質(zhì)推出AD⊥BC,根據(jù)平行線的判定推出即可;
          (2)根據(jù)等腰三角形的性質(zhì)得到∠BAD=∠CAD,關(guān)鍵平行線的性質(zhì)得出∠F=∠CAD,∠AEF=∠BAD,推出∠F=∠AEF,根據(jù)等腰三角形的判定即可得到答案.
          點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)和判定,平行線的性質(zhì)和判定等知識(shí)點(diǎn)的應(yīng)用,能運(yùn)用等腰三角形的性質(zhì)(三線合一定理)進(jìn)行推理是解此題的關(guān)鍵,題目比較典型,難度適中.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
          求證:∠A=∠B.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
          求:∠1+∠2+∠3+∠4.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
          求證:∠ANM=∠B.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
          (1)求∠2的度數(shù);
          (2)若畫(huà)∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案