【題目】如圖1,在△ABC中,∠B=90°,∠C=30°,動點(diǎn)P從點(diǎn)B開始沿邊BA、AC向點(diǎn)C以恒定的速度移動,動點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以恒定的速度移動,兩點(diǎn)同時(shí)到達(dá)點(diǎn)C,設(shè)△BPQ的面積為y(cm2).運(yùn)動時(shí)間為x(s),y與x之間關(guān)系如圖2所示,當(dāng)點(diǎn)P恰好為AC的中點(diǎn)時(shí),PQ的長為( 。
A.2B.4C.2D.4
【答案】C
【解析】
點(diǎn)P、Q的速度比為3:,根據(jù)x=2,y=6
,確定P、Q運(yùn)動的速度,即可求解.
解:設(shè)AB=a,∠C=30°,則AC=2a,BC=a,
設(shè)P、Q同時(shí)到達(dá)的時(shí)間為T,
則點(diǎn)P的速度為,點(diǎn)Q的速度為
,故點(diǎn)P、Q的速度比為3:
,
故設(shè)點(diǎn)P、Q的速度分別為:3v、v,
由圖2知,當(dāng)x=2時(shí),y=6,此時(shí)點(diǎn)P到達(dá)點(diǎn)A的位置,即AB=2×3v=6v,
BQ=2×v=2
v,
y=AB×BQ=
6v×2
v=6
,解得:v=1,
故點(diǎn)P、Q的速度分別為:3,,AB=6v=6=a,
則AC=12,BC=6,
如圖當(dāng)點(diǎn)P在AC的中點(diǎn)時(shí),PC=6,
此時(shí)點(diǎn)P運(yùn)動的距離為AB+AP=12,需要的時(shí)間為12÷3=4,
則BQ=x=4
,CQ=BC﹣BQ=6
﹣4
=2
,
過點(diǎn)P作PH⊥BC于點(diǎn)H,
PC=6,則PH=PCsinC=6×=3,同理CH=3
,則HQ=CH﹣CQ=3
﹣2
=
,
PQ==
=2
,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,過點(diǎn)D作DE∥BC交AB于點(diǎn)E,DF∥AB交BC于點(diǎn)F.
(1)求證:四邊形BEDF為菱形;
(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是銳角
的外接圓,
是
的切線,切點(diǎn)為
,
,連結(jié)
交
于
,
的平分線
交
于
,連結(jié)
.下列結(jié)論:①
平分
;②連接
,點(diǎn)
為
的外心;③
;④若點(diǎn)
,
分別是
和
上的動點(diǎn),則
的最小值是
.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是
的函數(shù),如表是
與
的幾組對應(yīng)值.
… | ﹣5 | ﹣4 | ﹣3 | ﹣2 | 0 | 1 | 2 | 3 | 4 | 5 | … | |
… | 1.969 | 1.938 | 1.875 | 1.75 | 1 | 0 | ﹣2 | ﹣1.5 | 0 | 2.5 | … |
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的與
之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①對應(yīng)的函數(shù)值
約為 ;
②該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,AE2=ADAB,∠ABE=∠ACB.
(1)求證:DE∥BC;
(2)如果S△ADE:S四邊形DBCE=1:8,求S△ADE:S△BDE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過O、A(4,0)、B(5,5)三點(diǎn),直線l交拋物線于點(diǎn)B,交y軸于點(diǎn)C(0,﹣4).點(diǎn)P是拋物線上一個(gè)動點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P關(guān)于直線OB的對稱點(diǎn)恰好落在直線l上,求點(diǎn)P的坐標(biāo);
(3)M是線段OB上的一個(gè)動點(diǎn),過點(diǎn)M作直線MN⊥x軸,交拋物線于點(diǎn)N.當(dāng)以M、N、B為頂點(diǎn)的三角形與△OBC相似時(shí),直接寫出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象經(jīng)過點(diǎn)A、P,點(diǎn)A(6,),點(diǎn)P的橫坐標(biāo)是2.拋物線y=ax2+bx+c(a≠0)經(jīng)過坐標(biāo)原點(diǎn),且與x軸交于點(diǎn)B,頂點(diǎn)為P.
求:(1)反比例函數(shù)的解析式;
(2)拋物線的表達(dá)式及B點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現(xiàn)以O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系(如圖1所示).
(1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計(jì)算說明;
(3)施工隊(duì)計(jì)劃在隧道門口搭建一個(gè)矩形“腳手架”CDAB,使A、D點(diǎn)在拋物線上。B、C點(diǎn)在地面OM線上(如圖2所示).為了籌備材料,需測算“腳手架”三根鋼桿AB、AD、DC的長度之和的最大值是多少,請你幫施工隊(duì)計(jì)算一下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,
是直徑,
為
上一點(diǎn),
,垂足為
,連接
.
(1)如圖1,求證:;
(2)如圖2,為
延長線上一點(diǎn),且
,求證:
;
(3)如圖3,在(2)的條件下,連接并延長,交
于
,若
,
求
的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com