日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 1.如圖,二次函數(shù)y=ax2+bx-3的圖象與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C,該拋物線的頂點為M.
          (1)求該拋物線的解析式;
          (2)判斷△BCM的形狀,并說明理由.

          分析 (1)用待定系數(shù)法求出該拋物線的解析式即可;
          (2)根據(jù)B、C、M的坐標,由勾股定理可求得△BCM三邊的長,然后判斷這三條邊的長是否符合勾股定理的逆定理即可.

          解答 解:(1)∵二次函數(shù)y=ax2+bx-3的圖象與x軸交于A(-1,0),B(3,0)兩點,
          ∴$\left\{\begin{array}{l}{a-b-3=0}\\{9a+3b-3=0}\end{array}\right.$,
          解得:$\left\{\begin{array}{l}{a=1}\\{b=-2}\end{array}\right.$,
          則拋物線解析式為y=x2-2x-3;
          (2)△BCM為直角三角形,理由如下:
          對于拋物線解析式y(tǒng)=x2-2x-3=(x-1)2-4,即頂點M坐標為(1,-4),
          令x=0,得到y(tǒng)=-3,即C(0,-3),
          根據(jù)勾股定理得:BC=3$\sqrt{2}$,BM=2$\sqrt{5}$,CM=$\sqrt{2}$,
          ∴BM2=BC2+CM2,
          ∴△BCM為直角三角形.

          點評 此題考查了二次函數(shù)解析式的求法、勾股定理、勾股定理的逆定理;熟練掌握勾股定理和逆定理是解決問題(2)的關鍵.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:解答題

          11.如圖所示,△ABC中,AB=BC,DE⊥AB于點E,DF⊥BC于點D,交AC于F.
          (1)若∠AFD=155°,求∠EDF的度數(shù);
          (2)若點F是AC的中點,猜想∠CFD與∠B的數(shù)量關系,并證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          12.如圖,拋物線y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2與x軸交于點A、點B,與y軸交于點C、點D與點C關于x軸對稱,點P是x軸上一動點,設點P的坐標為(m,0),過點P作x軸的垂線l交拋物線于點Q.
          (1)求直線BD的解析式.
          (2)當點P在線段OB上運動時,直線l交BD于點M,試探究m為何值時四邊形CQMD是平行四邊形.
          (3)點P在運動過程中,是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點Q坐標;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          9.用適當方法計算:
          (1)$\frac{1}{2}$+(-$\frac{2}{3}$)+$\frac{4}{5}$+(-$\frac{1}{2}$)+(-$\frac{1}{3}$);
          (2)(-49$\frac{7}{11}$)÷7.
          (3)(-$\frac{6}{5}$)×(-$\frac{2}{3}$)+(-$\frac{6}{5}$)×(+$\frac{17}{3}$)
          (4)$\frac{1}{12}$÷(-$\frac{1}{6}$-$\frac{2}{3}$+$\frac{1}{4}$).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          16.如圖,AB為⊙O的直徑,弦AD平分∠CAB,過點D作DE⊥AC,垂足為點E,ED的延長線交AB的延長線于點F.
          (1)判斷EF與⊙O的位置關系,并證明你的結論;
          (2)若ED=2,AE=4,求⊙O 的半徑及AF的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:選擇題

          6.某地一天早晨的氣溫是-5℃,中午上升了10℃,午夜又下降了8℃,則午夜的氣溫是( 。
          A.-3℃B.-5℃C.5℃D.-9℃

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:填空題

          13.方程$\frac{x}{0.5}$=$\frac{x}{2}$+1的解是x=$\frac{2}{3}$.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:填空題

          10.寫出二元一次方程x+4y=11的一個整數(shù)解$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          11.計算:
          (1)6a6b4÷3a3b4+a2•(-5a)            
          (2)a2(a-1)+(a-5)(a+5)
          (3)2014×2016-20152
          (4)(-$\frac{1}{9}$)1001×32003

          查看答案和解析>>

          同步練習冊答案