日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•沈陽)如圖,△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
          (1)求證:BF=2AE;
          (2)若CD=
          2
          ,求AD的長(zhǎng).
          分析:(1)先判定出△ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,再根據(jù)同角的余角相等求出∠CAD=∠CBE,然后利用“角邊角”證明△ADC和△BDF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BF=AC,再根據(jù)等腰三角形三線合一的性質(zhì)可得AC=2AF,從而得證;
          (2)根據(jù)全等三角形對(duì)應(yīng)邊相等可得DF=CD,然后利用勾股定理列式求出CF,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AF=CF,然后根據(jù)AD=AF+DF代入數(shù)據(jù)即可得解.
          解答:(1)證明:∵AD⊥BC,∠BAD=45°,
          ∴△ABD是等腰直角三角形,
          ∴AD=BD,
          ∵BE⊥AC,AD⊥BC,
          ∴∠CAD+∠ACD=90°,
          ∠CBE+∠ACD=90°,
          ∴∠CAD=∠CBE,
          在△ADC和△BDF中,
          ∠CAD=∠CBE
          AD=BD
          ∠ADC=∠BDF=90°
          ,
          ∴△ADC≌△BDF(ASA),
          ∴BF=AC,
          ∵AB=BC,BE⊥AC,
          ∴AC=2AE,
          ∴BF=2AE;

          (2)解:∵△ADC≌△BDF,
          ∴DF=CD=
          2
          ,
          在Rt△CDF中,CF=
          DF2+CD2
          =
          (
          2
          )
          2
          +(
          2
          )
          2
          =2,
          ∵BE⊥AC,AE=EC,
          ∴AF=CF=2,
          ∴AD=AF+DF=2+
          2
          點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),勾股定理的應(yīng)用,以及線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•沈陽)如圖所示是一個(gè)幾何體的三視圖,這個(gè)幾何體的名稱是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•沈陽)如圖,△ABC中,AE交BC于點(diǎn)D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,則DE的長(zhǎng)等于(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•沈陽)如圖,點(diǎn)A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,則⊙O的直徑的長(zhǎng)是
          13
          13

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•沈陽)如圖,OC平分∠MON,點(diǎn)A在射線OC上,以點(diǎn)A為圓心,半徑為2的⊙A與OM相切與點(diǎn)B,連接BA并延長(zhǎng)交⊙A于點(diǎn)D,交ON于點(diǎn)E.
          (1)求證:ON是⊙A的切線;
          (2)若∠MON=60°,求圖中陰影部分的面積.(結(jié)果保留π)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•沈陽)如圖,在平面直角坐標(biāo)系中,拋物線y=
          8
          2
          5
          x2+bx+c經(jīng)過點(diǎn)A(
          3
          2
          ,0)和點(diǎn)B(1,2
          2
          ),與x軸的另一個(gè)交點(diǎn)為C.
          (1)求拋物線的函數(shù)表達(dá)式;
          (2)點(diǎn)D在對(duì)稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點(diǎn)D的坐標(biāo);
          (3)在(2)的條件下,連接BD,交拋物線對(duì)稱軸于點(diǎn)E,連接AE.
          ①判斷四邊形OAEB的形狀,并說明理由;
          ②點(diǎn)F是OB的中點(diǎn),點(diǎn)M是直線BD的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng)∠BMF=
          1
          3
          ∠MFO時(shí),請(qǐng)直接寫出線段BM的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案