日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知k為整數(shù),若關(guān)于x的二次方程kx2+(2k+3)x+l=O有有理根,則k的值是
           
          分析:先根據(jù)原方程有有理根可得出此方程的判別式為完全平方數(shù)即=(2k+3)2-4k為完全平方數(shù),設(shè)(2k+3)2-4k=m2(m為正整數(shù)),即4k2+8k+9-m2=0,再把此式看作關(guān)于k的二次方程,由題設(shè)可知此方程有整數(shù)根,再根據(jù)此方程的判別式為完全平方數(shù)即可得到關(guān)于n、m的方程組,求出m、n的值,進(jìn)而可求出k的值.
          解答:解:∵關(guān)于x的二次方程kx2+(2k+3)x+l=O有有理根,
          ∴△1=(2k+3)2-4k為完全平方數(shù),
          設(shè)(2k+3)2-4k=m2(m為正整數(shù)),即4k2+8k+9-m2=0①,
          將①式看作關(guān)于k的二次方程,由題設(shè)可知此方程有整數(shù)根,故①式的判別式△2=64-16(9-m2)=16(m2-5)應(yīng)為完全平方數(shù),
          令m2-5=n2(n為正整數(shù),且m>n),則有(m+n)(m-n)=5,
          m+n=5
          m-n=1
          ,解得
          m=3
          n=2
          ,
          將m=3代入①式得k=-2或k=0(舍去),
          ∴k=-2.
          故答案為:-2.
          點(diǎn)評(píng):本題考查的是一元二次方程的整數(shù)根與有理根,解答此題的關(guān)鍵是熟知若方程有有理根,則此方程的判別式必為完全平方數(shù)這一關(guān)鍵知識(shí)點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知:拋物線y=(k-1)x2+2kx+k-2與x軸有兩個(gè)不同的交點(diǎn).
          (1)求k的取值范圍;
          (2)當(dāng)k為整數(shù),且關(guān)于x的方程3x=kx-1的解是負(fù)數(shù)時(shí),求拋物線的解析式;
          (3)在(2)的條件下,若在拋物線和x軸所圍成的封閉圖形內(nèi)畫(huà)出一個(gè)最大的正方形,使得正方形的一邊在x軸上,其對(duì)邊的兩個(gè)端點(diǎn)在拋物線上,試求出這個(gè)最大正方形的邊長(zhǎng)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知a為正整數(shù)a=b-2005,若關(guān)于x的方程x2-ax+b=0有正整數(shù)解,則a的最小值是多少?
          (溫馨提示:先設(shè)方程的兩根為x1,x2,然后…)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2004年山西省太原市初中數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:填空題

          已知k為整數(shù),若關(guān)于x的二次方程kx2+(2k+3)x+l=O有有理根,則k的值是    

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年安徽省蕪湖市安師大附中理科實(shí)驗(yàn)班招生數(shù)學(xué)試卷(解析版) 題型:填空題

          已知k為整數(shù),若關(guān)于x的二次方程kx2+(2k+3)x+l=O有有理根,則k的值是    

          查看答案和解析>>

          同步練習(xí)冊(cè)答案