日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在等腰梯形ABCD中,已知AD∥BC,AB=DC,∠ACB=42°,∠ACD=27°.
          (1)∠BAC=
          69
          69
          °;
          (2)如果BC=10cm,連接BD,求BD的長度.
          分析:(1)先求出∠BCD的度數(shù),根據(jù)等腰梯形的性質(zhì)可得出∠ABC的度數(shù),在△ABC中利用勾股定理可得出∠BAC的度數(shù);
          (2)結(jié)合(1)的結(jié)論,可得出AC=BC,再由等腰梯形的對角線相等即可得出BD的長度.
          解答:解:(1)∵∠ACB=42°,∠ACD=27°,
          ∴∠BCD=∠BCA+∠ACD=69°;

          (2)∵∠ABC=∠BAC=69°,
          ∴AC=BC=10cm,
          又∵四邊形ABCD是等腰梯形,
          ∴BD=AC=10cm.
          點評:本題考查了等腰梯形的性質(zhì),解答本題關(guān)鍵是掌握等腰梯形的對角線相等,同一底邊上的底角相等.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          25、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,點P為BC邊上任意一點,且
          PE⊥AB,PF⊥CD,BG⊥CD,垂足分別是E、F、G,請你探索PE、PF、BG的長度之間的關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          1、如圖所示,在等腰梯形ABCD中,AD∥BC,DE⊥BC于點E,BF⊥AE于點F,請你添加一個條件,使△ABF≌△CDE.
          (1)你添加的一個條件是
          AE=BE
          ;
          (2)請寫出證明過程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          48、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于E,BF⊥AE于F,AE=BE.請你判斷線段BF與圖形中哪條線段相等,先寫出你的猜想,再加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在等腰梯形ABCD中,AB∥CD,若AB+CD=4,并且∠AOB=120°,則該等腰梯形的面積為
           
          (結(jié)果保留根號的形式).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在等腰梯形ABCD中,AD∥BC,過A作腰CD的平行線,AE∥CD,AB=AD=DC,∠B=60°
          (1)△ABE是什么三角形?說明理由;
          (2)已知,AB=5,試求梯形ABCD的周長及對角線AC的長.

          查看答案和解析>>

          同步練習(xí)冊答案