日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 矩形紙片ABCD中,AB=5,AD=4.
          (1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出的一個(gè)正方形.你能否在該矩形中裁剪出一個(gè)面積最大的正方形,最大面積是多少?說(shuō)明理由;
          (2)請(qǐng)用矩形紙片ABCD剪拼成一個(gè)面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點(diǎn)都在網(wǎng)格的格點(diǎn)上).

          【答案】分析:(1)設(shè)AM=x(0≤x≤4)則MD=4-x,根據(jù)正方形的性質(zhì)就可以得出Rt△ANM≌Rt△DMF.根據(jù)正方形的面積就可以表示出解析式,由二次函數(shù)的性質(zhì)就可以求出其最值;
          (2)先將矩形紙片分割成4個(gè)全等的直角三角形和兩個(gè)矩形如圖,根據(jù)趙爽弦圖的構(gòu)圖方法就可以拼成正方形.
          解答:解:(1)正方形的最大面積是16.設(shè)AM=x(0≤x≤4),則MD=4-x
          ∵四邊形MNEF是正方形,
          MN=MF,∠AMN+∠FMD=90°.
          ∵∠AMN+∠ANM=90°,
          ∴∠ANM=∠FMD
          ∵在△ANM和△DMF中
           ,
          ∴△ANM≌△DMF(AAS)
          DM=AN
          ∴S正方形MNEF=MN2=AM2+AN2,
          =x2+(4-x)2
          =2(x-2)2+8
          ∵函數(shù) S正方形MNEF=2(x-2)2+8的開口向上,
          對(duì)稱軸是x=2,
          在對(duì)稱軸的左側(cè)S隨x的增大而減小,在對(duì)稱軸的右側(cè)S隨x的增大而增大,
          ∵0≤x≤4,
          ∴當(dāng)x=0或x=4時(shí),
          正方形MNEF的面積最大.
          最大值是16.

          (2)先將矩形紙片ABCD分割成4個(gè)全等的直角三角形和兩個(gè)矩形如圖1,然后拼成如圖2的正方形.

          點(diǎn)評(píng):本題考查了全等三角形的判定及性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,二次函數(shù)的解析式的運(yùn)用,拼圖的運(yùn)用,在解答本題時(shí)由正方形的性質(zhì)建立二次函數(shù)是求最值的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=3cm,BC=4cm,若要在該紙片中剪下兩個(gè)外切的圓⊙O1和⊙O2,要求⊙O1和⊙O2的圓心均在對(duì)角線BD上,且⊙O1和⊙O2分別與BC、AD相切,則O1O2的長(zhǎng)為( 。
          A、
          5
          3
          cm
          B、
          5
          2
          cm
          C、
          15
          8
          cm
          D、2cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,矩形紙片ABCD中,AD=9,AB=3,將其折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,那么折痕EF的長(zhǎng)為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在矩形紙片ABCD中,將矩形紙片沿著對(duì)角線AC折疊,使點(diǎn)D落在點(diǎn)F處,設(shè)AF與BC相交于點(diǎn)E.
          (1)試說(shuō)明△ABE≌△CFE;(2)若AB=6,AD=8,求AE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖①,矩形紙片ABCD中,AD=14cm,AB=10cm.
          (1)將矩形紙片ABCD沿折線AE對(duì)折,使AB邊與AD邊重合,B點(diǎn)落在F點(diǎn)處,如圖②所示,再剪去四邊形CEFD,余下部分如圖③所示,若將余下的紙片展開,則所得的四邊形ABEF的形狀是
           
          ,它的面積為
           
          cm2;
          (2)將圖③中的紙片沿折線AG對(duì)折,使AF與AE邊重合,F(xiàn)點(diǎn)落在H點(diǎn)處.如圖④所示,再沿HG將△HGE剪下,余下的部分如圖⑤所示,把圖⑤的紙片完全展開,請(qǐng)你在圖⑥的矩形ABCD中畫出展開后圖形的示意圖,剪去的部分用陰影表示,折痕用虛線表示;
          (3)求圖④中剪去的△HGE的展開圖的面積(結(jié)果用含有根式的式子表示).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•龍巖)如圖①,在矩形紙片ABCD中,AB=
          3
          +1,AD=
          3

          (1)如圖②,將矩形紙片向上方翻折,使點(diǎn)D恰好落在AB邊上的D′處,壓平折痕交CD于點(diǎn)E,則折痕AE的長(zhǎng)為
          6
          6
          ;
          (2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點(diǎn)F,則四邊形B′FED′的面積為
          3
          -
          1
          2
          3
          -
          1
          2
          ;
          (3)如圖④,將圖②中的△AED′繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過(guò)頂點(diǎn)B,求弧D′D″的長(zhǎng).(結(jié)果保留π)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案