日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 直角三角形AOB在平面直角坐標(biāo)系中如圖所示,O與坐標(biāo)原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=2數(shù)學(xué)公式,∠BAO=30°,將△AOB沿直線BE折疊,使得OB邊落在AB上,點(diǎn)O與點(diǎn)D重合.
          (1)求直線BE的解析式;
          (2)求點(diǎn)D的坐標(biāo);
          (3)點(diǎn)P是x軸上的動(dòng)點(diǎn),使△PAB是等腰三角形,直接寫出P點(diǎn)的坐標(biāo);
          (4)點(diǎn)M是直線BE上的動(dòng)點(diǎn),過(guò)M點(diǎn)作AB的平行線交y軸于點(diǎn)N,是否存在這樣的點(diǎn)M,使得以點(diǎn)M、N、D、B為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)求出所有M點(diǎn)的坐標(biāo);如果不存在說(shuō)明理由.

          解:(1)∵∠BAO=30°
          ∴∠ABO=60°,
          ∵沿BE折疊O.D重合
          ∴∠EBO=30°,
          OE=BE,
          設(shè)OE=x,
          則(2x)2=x2+,
          ∴x=2,
          即 BE=4,
          E(-2,0),
          設(shè)Y=kx+b代入得;

          解得,
          ∴直線BE的解析式是:,

          (2)過(guò)D作DG⊥OA于G,
          ∵沿BE折疊O、D重合,
          ∴DE=2,
          ∵∠DAE=30°
          ∴∠DEA=60°,∠ADE=∠BOE=90°,
          ∴∠EDG=30°,
          ∴GE=1,DG=
          ∴OG=1+2=3,
          ∴D的坐標(biāo)是:D;

          (3)P1(-2,0);P2(6,0);;

          (4)存在,
          過(guò)D作DM1⊥y軸交BE于M,過(guò)M1作AB平行線交y軸于N1,
          則M1的橫坐標(biāo)是x=-3,代入直線BE的解析式得:
          y=-,
          ∴M1(-3,-),
          ②過(guò)D作DN2∥BE交y軸于N2,過(guò)N2作N2M2∥AB交直線EB于M2
          ∵D的橫坐標(biāo)是-3,
          ∴M2的橫坐標(biāo)是3,
          ∵M(jìn)1的坐標(biāo)是(-3,-),D(-3,),
          ∴DM1=+=2=NB,
          ∵BO=2
          ∴M2的縱坐標(biāo)是2+2+=5,
          ∴M2(3,5),
          ∴M點(diǎn)的坐標(biāo)是:(-3,-)和(3,5).
          分析:先利用直角三角形的性質(zhì)(直角三角形中,如果有一個(gè)角是30°,那么它所對(duì)的直角邊等于斜邊的一半.)和勾股定理求出點(diǎn)的坐標(biāo)E(-2,0),進(jìn)一步用待定系數(shù)法求出一次函數(shù)的解析式y(tǒng)=x+2
          點(diǎn)評(píng):解此題的關(guān)鍵是用兩點(diǎn)坐標(biāo)用待定系數(shù)法求出解析式,再利用平行線間的距離處處相等求出點(diǎn)的橫坐標(biāo).利用直角三角形的性質(zhì)和勾股定理用方程求出點(diǎn)的縱坐標(biāo),注意一題多解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:2012屆重慶萬(wàn)州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

          已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開(kāi)始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開(kāi)始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).

          (1)求出點(diǎn)C的坐標(biāo);
          (2)在這一運(yùn)動(dòng)過(guò)程中, 四邊形OPEM是什么四邊形?請(qǐng)說(shuō)明理由。若
          用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
          范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
          (3)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?
          若有,請(qǐng)求出所有滿足要求的t值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶萬(wàn)州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開(kāi)始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開(kāi)始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).

          (1)求出點(diǎn)C的坐標(biāo);

          (2)在這一運(yùn)動(dòng)過(guò)程中, 四邊形OPEM是什么四邊形?請(qǐng)說(shuō)明理由。若

          用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的

          范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?

          (3)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?

          若有,請(qǐng)求出所有滿足要求的t值.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案