日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在RtABC中,∠C90°,以AC為直徑作⊙OAB于點D,線段BC上有一點P

          1)當點P在什么位置時,直線DP與⊙O有且只有一個公共點,補全圖形并說明理由.

          2)在(1)的條件下,當BP,AD3時,求⊙O半徑.

          【答案】(1)補圖見解析;理由見解析;(2)

          【解析】

          1)根據(jù)題意補全圖形如圖所示,情況一:點P在過點DOD垂直的直線與BC的交點處,根據(jù)切線的定義即可得到結論;情況二:如圖,當點PBC的中點時,直線DP與⊙O有且只有一個公共點,連接CD,OD,根據(jù)圓周角定理得到∠ADC=BDC=90°,根據(jù)直角三角形的性質得到DP=CP,根據(jù)切線的判定定理即可得到結論;

          2)由題意可知在RtBCD中,根據(jù)直角三角形的性質得到BC=2BP,求得BC=,根據(jù)相似三角形的性質和勾股定理即可得到結論.

          解:(1)補全圖形如圖所示,

          情況一:點P在過點DOD垂直的直線與BC的交點處,

          理由:經(jīng)過半徑外端,并且垂直于這條半徑的直線是圓的切線;

          情況二:如圖,當點PBC的中點時,直線DP與⊙O有且只有一個公共點,

          證明:連接CD,OD,如上圖,

          AC是⊙O的直徑,

          ∴∠ADC=∠BDC90°

          ∵點PBC的中點,

          DPCP,

          ∴∠PDC=∠PCD,

          ∵∠ACB90°,

          ∴∠PCD+DCO90°

          ODOC,

          ∴∠DCO=∠ODC

          ∴∠PDC+ODC90°,

          ∴∠ODP90°,

          DPOD,

          ∴直線DP與⊙O相切;

          2)在RtBCD中,∵∠BDC90°,PBC的中點,

          BC2BP,

          BP,

          BC,

          ∵∠ACB=∠BDC90°,∠B=∠B

          ∴△ACB∽△CDB,

          ,

          ABx,

          AD3

          BDx3,

          xx3)=(2,

          x5(負值舍去),

          AB5,

          ∵∠BDC90°,

          AC,

          OCAC

          即⊙O的半徑為

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系xOy中,二次函數(shù)yax2+bx+c的圖象經(jīng)過點A0,﹣4)和B(﹣2,2).

          1)求c的值,并用含a的式子表示b

          2)當﹣2x0時,若二次函數(shù)滿足yx的增大而減小,求a的取值范圍;

          3)直線AB上有一點Cm,5),將點C向右平移4個單位長度,得到點D,若拋物線與線段CD只有一個公共點,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點A,B,C是⊙O上的三個點,點DBC的延長線上.有如下四個結論:①在∠ABC所對的弧上存在一點E,使得∠BCE=DCE;②在∠ABC所對的弧上存在一點E,使得∠BAE=AEC;③在∠ABC所對的弧上存在一點E,使得EO平分∠AEC;④在∠ABC所對的弧上任意取一點E(不與點A,C重合) ,DCE=ABO +AEO均成立.上述結論中,所有正確結論的序號是( )

          A. ①②③ B. ①③④ C. ②④ D. ①②③④

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,P是△ABC外部的一定點,D是線段BC上一動點,連接PDAC于點E

          小明根據(jù)學習函數(shù)的經(jīng)驗,對線段PD,PE,CD的長度之間的關系進行了探究,

          下面是小明的探究過程,請補充完整:

          1)對于點DBC上的不同位置,畫圖、測量,得到了線段PD,PECD的長度的幾組值,如表:

          位置1

          位置2

          位置3

          位置4

          位置5

          位置6

          位置7

          位置8

          位置9

          PD/cm

          2.56

          2.43

          2.38

          2.43

          2.67

          3.16

          3.54

          4.45

          5.61

          PE/cm

          2.56

          2.01

          1.67

          1.47

          1.34

          1.32

          1.34

          1.40

          1.48

          CD/cm

          0.00

          0.45

          0.93

          1.40

          2.11

          3.00

          3.54

          4.68

          6.00

          PD,PECD的長度這三個量中,確定   的長度是自變量,   的長度和   的長度都是這個自變量的函數(shù);

          2)在同一平面直角坐標系xOy中,畫出圖2中所確定的兩個函數(shù)的圖象;

          3)結合函數(shù)圖象,解決問題:

          連接CP,當△PCD為等腰三角形時,CD的長度約為   cm.(精確到0.1

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】ABCD中,對角線AC、BD相交于點O,E是邊AB上的一個動點(不與AB重合),連接EO并延長,交CD于點F,連接AFCE,下列四個結論中:

          ①對于動點E,四邊形AECF始終是平行四邊形;

          ②若∠ABC90°,則至少存在一個點E,使得四邊形AECF是矩形;

          ③若ABAD,則至少存在一個點E,使得四邊形AECF是菱形;

          ④若∠BAC45°,則至少存在一個點E,使得四邊形AECF是正方形.

          以上所有正確說法的序號是_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在⊙O中按如下步驟作圖:

          1)作⊙O的直徑AD;

          2)以點D為圓心,DO長為半徑畫弧,交⊙OB,C兩點;

          3)連接DB,DC,AB,AC,BC

          根據(jù)以上作圖過程及所作圖形,下列四個結論中錯誤的是(  )

          A.ABD90°B.BAD=∠CBDC.ADBCD.AC2CD

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)yax22ax

          1)二次函數(shù)圖象的對稱軸是直線x   

          2)當0≤x≤3時,y的最大值與最小值的差為4,求該二次函數(shù)的表達式;

          3)若a0,對于二次函數(shù)圖象上的兩點Px1,y1),Qx2y2),當tx1t+1,x2≥3時,均滿足y1y2,請結合函數(shù)圖象,直接寫出t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結論:

          ①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結論是 .(填寫所有正確結論的序號)

          【答案】①②③④.

          【解析】

          試題分析:△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,

          EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,BAE=CAF,AE=AF 可判定△ABE≌△ACF,故①正確.②∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以==,又因BD=2DC,DC=DE,可得=2,FG=2EG.故④正確.

          考點:三角形綜合題.

          型】填空
          束】
          19

          【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】《九章算術》是我國東漢初年編訂的一部數(shù)學經(jīng)典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1、圖2.圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應的常數(shù)項.把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是,類似地,圖2所示的算籌圖我們可以表述為( 。

          A.B.C.D.

          查看答案和解析>>

          同步練習冊答案