日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,拋物線y=x2向左平移1個(gè)單位,再向下平移4個(gè)單位,得到拋物線y=(x-h)2+k,所得拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,頂點(diǎn)為D.
          (1)求h、k的值;
          (2)判斷△ACD的形狀,并說(shuō)明理由;
          (3)在線段AC上是否存在點(diǎn)M,使△AOM與△ABC相似?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
          分析:(1)根據(jù)“左加右減,上加下減”的平移規(guī)律即可得到h、k的值;
          (2)根據(jù)(1)題所得的拋物線的解析式,即可得到A、C、D的坐標(biāo),進(jìn)而可求出AC、AD、CD的長(zhǎng),然后再判斷△ACD的形狀;
          (3)易求得B點(diǎn)的坐標(biāo),即可得到AB、AC、OA的長(zhǎng);△AOM和△ABC中,已知的相等角是∠OAM=∠BAC,若兩三角形相似,可考慮兩種情況:
          ①∠AOM=∠ABC,此時(shí)OM∥BC,△AOM∽△ABC;②∠AOM=∠ACB,此時(shí)△AOM∽△ACB;
          根據(jù)上述兩種情況所得到的不同比例線段即可求出AM的長(zhǎng),進(jìn)而可根據(jù)∠BAC的度數(shù)求出M點(diǎn)的橫、縱坐標(biāo),即可得到M點(diǎn)的坐標(biāo).
          解答:解:(1)∵y=x2的頂點(diǎn)坐標(biāo)為(0,0),
          ∴y=(x-h)2+k的頂點(diǎn)坐標(biāo)D(-1,-4),
          ∴h=-1,k=-4 (3分)

          (2)由(1)得y=(x+1)2-4
          當(dāng)y=0時(shí),
          (x+1)2-4=0
          x1=-3,x2=1
          ∴A(-3,0),B(1,0)(1分)
          當(dāng)x=0時(shí),y=(x+1)2-4=(0+1)2-4=-3
          ∴C點(diǎn)坐標(biāo)為(0,-3)
          又∵頂點(diǎn)坐標(biāo)D(-1,-4)(1分)精英家教網(wǎng)
          作出拋物線的對(duì)稱軸x=-1交x軸于點(diǎn)E
          作DF⊥y軸于點(diǎn)F
          在Rt△AED中,AD2=22+42=20
          在Rt△AOC中,AC2=32+32=18
          在Rt△CFD中,CD2=12+12=2
          ∵AC2+CD2=AD2
          ∴△ACD是直角三角形;

          (3)存在.由(2)知,OA=3,OC=3,則△AOC為等腰直角三角形,∠BAC=45°;
          連接OM,過(guò)M點(diǎn)作MG⊥AB于點(diǎn)G,
          AC=
          18
          =3
          2

          ①若△AOM∽△ABC,則
          AO
          AB
          =
          AM
          AC
          ,
          3
          4
          =
          AM
          3
          2
          ,AM=
          3×3
          2
          4
          =
          9
          2
          4

          ∵M(jìn)G⊥AB
          ∴AG2+MG2=AM2
          AG=MG=
          (
          9
          2
          4
          )2
          2
          =
          81
          16
          =
          9
          4

          OG=AO-AG=3-
          9
          4
          =
          3
          4

          ∵M(jìn)點(diǎn)在第三象限
          ∴M(-
          3
          4
          ,-
          9
          4
          );
          ②若△AOM∽△ACB,則
          AO
          AC
          =
          AM
          AB

          3
          3
          2
          =
          AM
          4
          ,AM=
          3×4
          3
          2
          =2
          2

          ∴AG=MG=
          AM2
          2
          =
          (2
          2
          )2
          2
          =2

          OG=AO-AG=3-2=1
          ∵M(jìn)點(diǎn)在第三象限
          ∴M(-1,-2).
          綜上①、②所述,存在點(diǎn)M使△AOM與△ABC相似,且這樣的點(diǎn)有兩個(gè),其坐標(biāo)分別為(-
          3
          4
          ,-
          9
          4
          ),(-1,-2).
          點(diǎn)評(píng):此題考查了二次函數(shù)圖象的平移、直角三角形的判定、勾股定理以及相似三角形的判定和性質(zhì);需注意的是(3)題在不確定相似三角形的對(duì)應(yīng)邊和對(duì)應(yīng)角的情況下要分類討論,以免漏解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
          (1)求點(diǎn)B的坐標(biāo);
          (2)當(dāng)∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
          (3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案