日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在∠ABC中,∠ABC90°,tanBAC

          1)如圖1,分別過(guò)A、C兩點(diǎn)作經(jīng)過(guò)點(diǎn)B的直線的垂線,垂足分別為M、N,若點(diǎn)B恰好是線段MN的中點(diǎn),求tanBAM的值;

          2)如圖2,P是邊BC延長(zhǎng)線上一點(diǎn),∠APB=∠BAC,求tanPAC的值.

          【答案】1tanBAM;(2tanPAC

          【解析】

          1)先證明∠M=∠N90°,∠MAB=∠NBC,那么AMB∽△BNC,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出tanBAC.由線段中點(diǎn)的定義可得BMBN,然后在RtAMB中,利用正切函數(shù)的定義即可求出tanBAM的值;

          2)過(guò)點(diǎn)CCDACAP于點(diǎn)D,過(guò)點(diǎn)DDEBP于點(diǎn)E.根據(jù)正切函數(shù)的定義得出tanBAC,tanAPB.而∠APB=∠BAC,那么可設(shè)BCx,則AB2x,得出BP4x,則CP3x.同理(1)中,易證∠BAC=∠ECD,根據(jù)等腰三角形的判定與性質(zhì)得出CEEPCPx.再證明ABC∽△CED,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出,然后在RtACD中,利用正切函數(shù)的定義即可求出tanPAC的值.

          1)如圖 1

          AMMNCNMN,

          ∴∠M=∠N90°

          ∴∠MAB+ABM90°,

          ∵∠ABC90°,

          ∴∠NBC+ABM90°,

          ∴∠MAB=∠NBC,

          ∴△AMB∽△BNC

          tanBAC

          ∵點(diǎn)B是線段MN的中點(diǎn)

          BMBN,

          ∴在RtAMB中,tanBAM;

          2)如圖2,過(guò)點(diǎn)CCDACAP于點(diǎn)D,過(guò)點(diǎn)DDEBP于點(diǎn)E

          tanBAC,∠APB=∠BAC

          tanBAC,tanAPB

          設(shè)BCx,則AB2x,BP4x,則CPBPBC4xx3x

          同理(1)中,可得∠BAC=∠ECD,

          ∴∠APB=∠ECD

          DEBP,

          CEEPCPx

          同理(1)中,可得ABC∽△CED,

          ∴在RtACD中,tanPAC

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點(diǎn)P,使得∠APB=30°,如圖②,小明的作圖方法如下:

          第一步:分別以點(diǎn)A,B為圓心,AB長(zhǎng)為半徑作弧,兩弧在AB上方交于點(diǎn)O;

          第二步:連接OAOB;

          第三步:以O為圓心,OA長(zhǎng)為半徑作⊙O,交lP1,P2;

          所以圖中P1P2即為所求的點(diǎn).

          1)在圖②中,連接P1AP1B,證明∠AP1B=30°

          2)如圖③,用直尺和圓規(guī)在矩形ABCD內(nèi)作出所有的點(diǎn)P,使得∠BPC=45°,(不寫(xiě)做法,保留作圖痕跡).

          3)已知矩形ABCD,若BC=2AB=m,PAD邊上的點(diǎn),若滿足∠BPC=45°的點(diǎn)P恰有兩個(gè),則m的取值范圍為______________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形OABC中,點(diǎn)A,B的坐標(biāo)分別為A40),B4,3),動(dòng)點(diǎn)N,P分別從點(diǎn)BA同時(shí)出發(fā),點(diǎn)N1單位/秒的速度向終點(diǎn)C運(yùn)動(dòng),點(diǎn)P5/4單位/秒的速度向終點(diǎn)C運(yùn)動(dòng),連結(jié)NP,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t4

          1)直接寫(xiě)出OAAB,AC的長(zhǎng)度;

          2)求證:CPN∽△CAB;

          3)在兩點(diǎn)的運(yùn)動(dòng)過(guò)程中,若點(diǎn)M同時(shí)以1單位/秒的速度從點(diǎn)O向終點(diǎn)A運(yùn)動(dòng),求MPN的面積S與運(yùn)動(dòng)的時(shí)間t的函數(shù)關(guān)系式(三角形的面積不能為0),并直接寫(xiě)出當(dāng)S時(shí),運(yùn)動(dòng)時(shí)間t的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線y=kx(k≠0)經(jīng)過(guò)點(diǎn)(12,﹣5),將直線向上平移m(m>0)個(gè)單位,若平移后得到的直線與半徑為6的⊙O相交(點(diǎn)O為坐標(biāo)原點(diǎn)),則m的取值范圍為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】解方程.

          1x22x20

          25x+23x2

          35x32x29

          4)(y3)(y1)=8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線經(jīng)過(guò)點(diǎn),交y 軸于點(diǎn)C

          1)求拋物線的頂點(diǎn)坐標(biāo).

          2)點(diǎn)為拋物線上一點(diǎn),是否存在點(diǎn)使,若存在請(qǐng)直接給出點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

          3)將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn),與拋物線交于另一點(diǎn),求直線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方形中,是等邊三角形,的延長(zhǎng)線分別交于點(diǎn)、,連接、,相交于點(diǎn),給出下列結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)是(

          A. 1B. 2C. 3D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺(tái)設(shè)備成本價(jià)為30萬(wàn)元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),每臺(tái)售價(jià)為40萬(wàn)元時(shí),年銷售量為600臺(tái);每臺(tái)售價(jià)為45萬(wàn)元時(shí),年銷售量為550臺(tái).假定該設(shè)備的年銷售量y(單位:臺(tái))和銷售單價(jià)(單位:萬(wàn)元)成一次函數(shù)關(guān)系.

          (1)求年銷售量與銷售單價(jià)的函數(shù)關(guān)系式;

          (2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷售單價(jià)不得高于70萬(wàn)元,如果該公司想獲得10000萬(wàn)元的年利潤(rùn).則該設(shè)備的銷售單價(jià)應(yīng)是多少萬(wàn)元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,中,以為直徑作⊙,交于點(diǎn)為弧上一點(diǎn),連接、,交于點(diǎn).

          (1),求證:為⊙的切線;

          (2),求證:平分;

          (3)(2)的條件下,若,求⊙的半徑.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案