日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,△ABC是等邊三角形,將一塊含有30°角的直角三角板DEF如圖放置,讓三角板在BC所在的直線上向右平移,如圖1,當點E與點B重合時,點A恰好落在三角形的斜邊DF上.
          (1)利用圖1證明:EF=2BC;
          (2)在三角板的平移過程中,在圖2中線段EB=AH是否始終成立(假定AB,AC與三角板斜邊的交點為G、H)?如果成立,請證明;如果不成立,請說明理由.
          作业宝

          解:(1)∵△ABC是等邊三角形,
          ∴∠ACB=60°,AC=BC.
          ∵∠F=30°
          ∴∠CAF=60°-30°=30°.
          ∴∠CAF=∠F,
          ∴CF=AC,
          ∴CF=AC=EC,
          ∴EF=2BC.

          (2)成立.
          ∵△ABC是等邊三角形,
          ∴∠ACB=60°,AC=BC.
          ∵∠F=30°
          ∴∠CHF=60°-30°=30°.
          ∴∠CHF=∠F,
          ∴CH=CF.
          ∵EF=2BC,
          ∴BE+CF=BC.
          又∵AH+CH=AC,AC=BC,
          ∴AH=BE.
          分析:(1)根據(jù)等邊三角形的性質(zhì),得∠ACB=60°,AC=BC.結(jié)合三角形外角的性質(zhì),得∠CAF=60°-30°=30°,則CF=AC,從而證明結(jié)論;
          (2)根據(jù)(1)中的證明方法,得到CH=CF.根據(jù)(1)中的結(jié)論,知BE+CF=AC,從而證明結(jié)論.
          點評:此題綜合運用了等邊三角形的性質(zhì)、三角形的外角性質(zhì)以及等腰三角形的判定及性質(zhì).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          某“研究性學(xué)習(xí)小組”遇到了以下問題,請參與:
          已知,△ABC是等邊三角形且內(nèi)接于⊙O,取
          AB
          上異于A、B的點M.設(shè)直線CA與BM相交于點K,直線CB與AM相交于點N.
          精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)
          (1)如圖1,圖2,圖3,M分別為
          AB
          的中點、三分之一點、四分之一點,△ABC的邊長均為2,分別測量出AK、BN的長,計算AK•BN的值(精確到0.01)并將結(jié)果填入下表中:
            △ABC的邊長  AK•BN的值 
           圖1  
           圖2  2  
           圖3  2  
          (2)如圖4,當M為
          AB
          上任意一點時,根據(jù)(1)的結(jié)果,猜想AK•BN與AB的數(shù)量關(guān)系式為
           
          ;
          (3)對(2)中提出的猜想,依圖4給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          22、已知,△ABC是等邊三角形,將一塊含有30°角的直角三角板DEF如圖放置,讓三角板在BC所在的直線上向右平移,如圖1,當點E與點B重合時,點A恰好落在三角形的斜邊DF上.
          (1)利用圖1證明:EF=2BC;
          (2)在三角板的平移過程中,在圖2中線段EB=AH是否始終成立(假定AB,AC與三角板斜邊的交點為G、H)?如果成立,請證明;如果不成立,請說明理由?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,現(xiàn)給出四個論斷:①DB=DE;②CE=CD;③BD是△ABC的中線;④△ABC是等邊三角形.請以其中的三個為條件,余下的一個為結(jié)論,組成一個正確的命題(只需寫出一種),并給予證明.
          已知:
          △ABC是等邊三角形
          △ABC是等邊三角形
          ,
          BD是△ABC中線
          BD是△ABC中線
          ;
          CD=CE
          CD=CE

          求證:
          DB=DE
          DB=DE

          證明:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,△ABC是等邊三角形,點D為直線BC上一點(端點B、C除外),以AD為邊作等邊△ADF,連接CF.
          (1)如圖1,點D在點C右邊,①求證:BD=CF;②求∠FCD的度數(shù);
          (2)如圖2,點D在點B左邊,點F在直線BC下方,請先補全圖形,并直接給出∠AFC與∠DAC之間滿足的數(shù)量關(guān)系式為
          ∠AFC+∠DAC=120°
          ∠AFC+∠DAC=120°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:△ABC是等邊三角形,△BDC是等腰三角形,其中∠BDC=120°,過點D作∠EDF=60°,分別交AB于E,交AC于F,連接EF.
          (1)若BE=CF,求證:①△DEF是等邊三角形;②BE+CF=EF.
          (2)若BE≠CF,即E、F分別是線段AB,AC上任意一點,BE+CF=EF還會成立嗎?請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案