日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】探究題
          如圖1,等邊△ABC中,BC=4,點P從點B出發(fā),沿BC方向運(yùn)動到點C,點P關(guān)于直線AB、AC的對稱點分別為點M、N,連接MN.

          (1)【發(fā)現(xiàn)】
          當(dāng)點P與點B重合時,線段MN的長是
          當(dāng)AP的長最小時,線段MN的長是;
          (2)【探究】
          如圖2,設(shè)PB=x,MN2=y,連接PM、PN,分別交AB,AC于點D,E.
          用含x的代數(shù)式表示PM= , PN=
          (3)求y關(guān)于x的函數(shù)關(guān)系式,并寫出y的取值范圍;
          (4)當(dāng)點P在直線BC上的什么位置時,線段MN=3 (直接寫出答案)
          (5)【拓展】
          如圖3,求線段MN的中點K經(jīng)過的路線長.

          (6)【應(yīng)用】
          如圖4,在等腰△ABC中,∠BAC=30°,AB=AC,BC=2,點P、Q、R分別為邊BC、AB、AC上(均不與端點重合)的動點,則△PQR周長的最小值是
          (可能用到的數(shù)值:sin75°= ,cos75°= ,tan75°=2+

          【答案】
          (1)4 ;6
          (2)
          x;
          (4﹣x)
          (3)

          解:

          如圖2,分別過點M,N作直線BC的垂線MF,NG,垂足分別是F,G,過點M作MH⊥NG垂足為H.

          ∵在Rt△PMF中,∠MPF=30°,PM= x,

          ∴MF= x,PF= x,

          同理,在Rt△PNG中,∠NPG=30°,PN= (4﹣x),

          ∴NG= (4﹣x),PG= (4﹣x),

          ∵四邊形MFGH是矩形,則有

          NH=NG﹣HG=NG﹣MF= (4﹣x)﹣ x= (2﹣x),

          MH=FG=PF+PG= x+ (4﹣x)=6,

          ∴在Rt△MNH中,由勾股定理得,

          MN2=NH2+MH2=3(x﹣2)2+36,

          則y=3(x﹣2)2+36,

          ∵0≤x≤4,且當(dāng)x=2時,y最小值=36;當(dāng)x=0或4時,y最大值=48,

          ∴36≤y≤48


          (4)

          解:∵M(jìn)N=3 ,MN2=63,

          ∴當(dāng)y=63時,即3(x﹣2)2+36=63,

          ∴x=5或1,

          ∴當(dāng)點P在B點右側(cè)距離為5,或者在點P在B點左側(cè)距離為1的位置處,均有線段MN=3


          (5)

          解:如圖3,分別過點M,N作直線BC的垂線MF,NG,垂足分別是F,G,連接MG,過MN的中點K,作KT⊥BC于點T,交MG于點S.

          ∵M(jìn)F∥KT∥NG,且點K為MN的中點,

          ∴KS是△MNG的中位線,

          ST是△GMF的中位線,


          (6)2+
          【解析】解:【發(fā)現(xiàn)】當(dāng)AP的長最小時,AP⊥BC,即點P為BC的中點時,
          此時E、F分別為AB、AC的中點,
          ∴PE= AC,PF= AB,EF= BC,
          ∴MN=ME+EF+FN=PE+EF+PF=6;
          當(dāng)點P和點B重合時,
          此時G(H)為AB(AC)的中點,
          ∴CG=2 BH=2 ,
          BN=4
          所以答案是:4 ,6;
          【探究】PM=2PD=2× PB= x,PN=2PE=2× PC=2× (4﹣x)= (4﹣x);
          所以答案是: x, (4﹣x);
          【拓展】
          由【探究】中的過程可知,若設(shè)PB=x,則有PC=4﹣x,MF= x,NG= (4﹣x),
          由三角形中位線性質(zhì)可得,ST= MF= x,KS= NG= (4﹣x),
          ∴KT=ST+KS= x+ (4﹣x)= ,
          因此,在點P運(yùn)動過程中,MN的中點 K到BC邊距離始終等于定值 ,且為
          等邊△ABC高的一半,所以MN的中點K經(jīng)過的路線恰為等邊△ABC的中位線,其路線長為2.
          【應(yīng)用】過BC的中點P作AB,AC的對稱點M,N,連接MN交AB與Q,交AC于R,

          則此時△PQR周長最小,
          ∵∠BAC=30°,
          ∴∠B=∠C=75°,∠MPN=150°,
          ∴∠M=∠N=15°,
          ∴∠MQB=∠PQB=∠B=75°,
          ∴MN∥BC,PQ=PB=1,
          同理PR=PC=1,
          ∵AP⊥BC,
          ∴AP⊥MN.
          ∵∠PQR=180°﹣75°﹣75°=30°,
          ∴QR=2× PQ=
          ∴△PQR周長的最小值是2+
          所以答案是:2+

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算: +|1﹣ |+ +( 1﹣20170

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若一個等腰三角形的兩條邊的邊長之比3:2,則這個等腰三角形底角的正切值為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中有一Rt△AOB,O為坐標(biāo)原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線l:y=﹣x2+bx+c經(jīng)過A、B兩點.

          (1)求拋物線l的解析式及頂點G的坐標(biāo).
          (2)①求證:拋物線l經(jīng)過點C.
          ②分別連接CG,DG,求△GCD的面積.
          (3)在第二象限內(nèi),拋物線上存在異于點G的一點P,使△PCD與△CDG的面積相等,請直接寫出點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑了4.5km到達(dá)學(xué)校,最后又向東,跑回到自己家.
          (1)以小明家為原點,以向東為正方向,用1個單位長度表示1km,在圖中的數(shù)軸上,分別用點A表示出小彬家,用點B表示出小紅家,用點C表示出學(xué)校的位置;

          (2)求小彬家與學(xué)校之間的距離;
          (3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時間?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1 , l2 , 過點(1,0)作x軸的垂線交l1于點A1 , 過點A1作y軸的垂線交l2于點A2 , 過點A2作x軸的垂線交l1于點A3 , 過點A3作y軸的垂線交l2于點A4 , …依次進(jìn)行下去,則點A2017的坐標(biāo)為 , A2n+1的坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,在平面直角坐標(biāo)中,點A的坐標(biāo)為(1,﹣2),點B的坐標(biāo)為(3,﹣1),二次函數(shù)y=﹣x2的圖象為l1

          (1)平移拋物線l1 , 使平移后的拋物線經(jīng)過點A,但不過點B.
          ①滿足此條件的函數(shù)解析式有個.
          ②寫出向下平移且經(jīng)點A的解析式
          (2)平移拋物線l1 , 使平移后的拋物線經(jīng)過A,B兩點,所得的拋物線l2 , 如圖②,求拋物線l2的函數(shù)解析式及頂點C的坐標(biāo),并求△ABC的面積.
          (3)在y軸上是否存在點P,使SABC=SABP?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,OA是⊙M的直徑,點B在x軸上,連接AB交⊙M于點C.

          (1)若點A的坐標(biāo)為(0,2),∠ABO=30°,求點B的坐標(biāo).
          (2)若D為OB的中點,求證:直線CD是⊙O的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,CD是邊AB上的高,且=

          (1)求證:△ACD∽△CBD
          (2)求∠ACB的大小

          查看答案和解析>>

          同步練習(xí)冊答案