日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知直線y=kx+b與拋物線y=ax2(a>0)相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸正半軸相交于點(diǎn)C,過(guò)點(diǎn)A作AD⊥x軸,垂足為D.

          (1)若∠AOB=60°,AB∥x軸,AB=2,求a的值;
          (2)若∠AOB=90°,點(diǎn)A的橫坐標(biāo)為﹣4,AC=4BC,求點(diǎn)B的坐標(biāo);
          (3)延長(zhǎng)AD、BO相交于點(diǎn)E,求證:DE=CO.

          【答案】
          (1)解:如圖1,

          ∵拋物線y=ax2的對(duì)稱軸是y軸,且AB∥x軸,
          ∴A與B是對(duì)稱點(diǎn),O是拋物線的頂點(diǎn),
          ∴OA=OB,
          ∵∠AOB=60°,
          ∴△AOB是等邊三角形,
          ∵AB=2,AB⊥OC,
          ∴AC=BC=1,∠BOC=30°,
          ∴OC= ,
          ∴A(-1, ),
          把A(-1, )代入拋物線y=ax2(a>0)中得:a= ;
          (2)解:如圖2,過(guò)B作BE⊥x軸于E,過(guò)A作AG⊥BE,交BE延長(zhǎng)線于點(diǎn)G,交y軸于F,

          ∵CF∥BG,

          ∵AC=4BC,
          =4,
          ∴AF=4FG,
          ∵A的橫坐標(biāo)為-4,
          ∴B的橫坐標(biāo)為1,
          ∴A(-4,16a),B(1,a),
          ∵∠AOB=90°,
          ∴∠AOD+∠BOE=90°,
          ∵∠AOD+∠DAO=90°,
          ∴∠BOE=∠DAO,
          ∵∠ADO=∠OEB=90°,
          ∴△ADO∽△OEB,
          ,
          ,
          ∴16a2=4,
          a=± ,
          ∵a>0,
          ∴a= ;
          ∴B(1, );
          (3)解:如圖3,

          設(shè)AC=nBC,
          由(2)同理可知:A的橫坐標(biāo)是B的橫坐標(biāo)的n倍,
          則設(shè)B(m,am2),則A(-mn,am2n2),
          ∴AD=am2n2 ,
          過(guò)B作BF⊥x軸于F,
          ∴DE∥BF,
          ∴△BOF∽△EOD,
          ,
          ,
          ,DE=am2n,
          ,
          ∵OC∥AE,
          ∴△BCO∽△BAE,
          ,

          ∴CO= =am2n,
          ∴DE=CO.
          【解析】(1)拋物線y=ax2關(guān)于y軸對(duì)稱,根據(jù)AB∥x軸,得出A與B是對(duì)稱點(diǎn),可知AC=BC=1,由∠AOB=60°,可證得△AOB是等邊三角形,利用解直角三角形求出OC的長(zhǎng),就可得出點(diǎn)A的坐標(biāo),利用待定系數(shù)法就可求出a的值。
          (2)過(guò)B作BE⊥x軸于E,過(guò)A作AG⊥BE,交BE延長(zhǎng)線于點(diǎn)G,交y軸于F,根據(jù)平行線分線段成比例證出AF=4FG,根據(jù)點(diǎn)A的橫坐標(biāo)為﹣4,求出點(diǎn)B的橫坐標(biāo)為1,則A(-4,16a),B(1,a),再根據(jù)已知證明∠BOE=∠DAO,∠ADO=∠OEB,就可證明△ADO∽△OEB,得出對(duì)應(yīng)邊成比例,建立關(guān)于a的方程求解,再根據(jù)點(diǎn)B在第一象限,確定點(diǎn)B的坐標(biāo)即可。
          (3)根據(jù)(2)可知A的橫坐標(biāo)是B的橫坐標(biāo)的n倍,則設(shè)B(m,am2),則A(-mn,am2n2),得出AD的長(zhǎng),再證明△BOF∽△EOD,△BCO∽△BAE,得對(duì)應(yīng)邊成比例,證得CO=am2n,就可證得DE=CO。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】中,

          1)如圖①,點(diǎn)在斜邊上,以點(diǎn)為圓心,長(zhǎng)為半徑的圓交于點(diǎn),交于點(diǎn),與邊相切于點(diǎn).求證:

          2)在圖②中作,使它滿足以下條件:

          ①圓心在邊上;②經(jīng)過(guò)點(diǎn);③與邊相切.

          (尺規(guī)作圖,只保留作圖痕跡,不要求寫(xiě)出作法)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了加強(qiáng)對(duì)校內(nèi)外安全監(jiān)控,創(chuàng)建平安校園,某學(xué)校計(jì)劃增加15臺(tái)監(jiān)控?cái)z像設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備,其中每臺(tái)價(jià)格,有效監(jiān)控半徑如表所示,經(jīng)調(diào)查,購(gòu)買(mǎi)1臺(tái)甲型設(shè)備比購(gòu)買(mǎi)1臺(tái)乙型設(shè)備多150元,購(gòu)買(mǎi)2臺(tái)甲型設(shè)備比購(gòu)買(mǎi)3臺(tái)乙型設(shè)備少400元.

          甲型

          乙型

          價(jià)格(元/臺(tái))

          a

          b

          有效半徑(米/臺(tái))

          150

          100

          1)求a、b的值;

          2)若購(gòu)買(mǎi)該批設(shè)備的資金不超過(guò)11000元,且要求監(jiān)控半徑覆蓋范圍不低于1600米,兩種型號(hào)的設(shè)備均要至少買(mǎi)一臺(tái),請(qǐng)你為學(xué)校設(shè)計(jì)購(gòu)買(mǎi)方案,并計(jì)算最低購(gòu)買(mǎi)費(fèi)用.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算:

          (1)3()()();

          (2)25.7(7.3)(13.7)7.3;

          (3)(2.125)()()(3.2)

          (4)(0.8)6.4(9.2)3.6(1)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在BC的延長(zhǎng)線上取點(diǎn)F,使得BF=EF,EF與AC交于點(diǎn)G.

          (1)試判斷直線EF與⊙O的位置關(guān)系,并說(shuō)明理由;
          (2)若OA=2,∠A=30°,求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如表是一個(gè)4×4(4行4列共16個(gè)“數(shù)”組成)的奇妙方陣,從這個(gè)方陣中選四個(gè)“數(shù)”,而且這四個(gè)“數(shù)”中的任何兩個(gè)不在同一行,也不在同一列,有很多選法,把每次選出的四個(gè)“數(shù)”相加,其和是定值,則方陣中第三行三列的“數(shù)”是(

          30

          2 sin60°

          22

          ﹣3

          ﹣2

          sin45°

          0

          |﹣5|

          6

          23

          1

          4

          1


          A.5
          B.6
          C.7
          D.8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1021日,中國(guó)流動(dòng)科技館巡展啟動(dòng)儀式在新華區(qū)青少年活動(dòng)中心盛大舉行,此次巡展以體驗(yàn)科學(xué)為主題.該區(qū)某中學(xué)舉行了科普知識(shí)競(jìng)賽,為了解此次科普知識(shí)競(jìng)賽成績(jī)的情況,隨機(jī)抽取了部分參賽學(xué)生的成績(jī),整理并制作出如下的不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖,如圖所示.請(qǐng)根據(jù)圖表信息解答以下問(wèn)題.

          組別

          成績(jī)/

          頻數(shù)

          A

          B

          12

          C

          18

          D

          21

          1)表中一共抽取了________個(gè)參賽學(xué)生的成績(jī);________;

          2)求出計(jì)算扇形統(tǒng)計(jì)圖中的圓心角度數(shù).

          3)若成績(jī)?cè)?/span>90分以上(包括90分)的為優(yōu)等,已知該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校約有多少名學(xué)生的成績(jī)是優(yōu)等.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為鼓勵(lì)市民節(jié)約用電,小亮家所在地區(qū)規(guī)定:每戶居民如果一個(gè)月的用電量不超過(guò)度,那么這戶居民這個(gè)月只需交元電費(fèi);如果超過(guò)度,則這個(gè)月除了仍要交元的電費(fèi)以外,超過(guò)的部分還要按每度元交電費(fèi).已知小亮家月份用電度,交電費(fèi)元;月份用電度,交電費(fèi)元.

          1)請(qǐng)直接寫(xiě)出小亮家月份超過(guò)度部分的用電量(用含的代數(shù)式表示);

          2)求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平整的地面上,有若干個(gè)完全相同的小正方體堆成的一個(gè)幾何體,如圖所示.

          (1)請(qǐng)畫(huà)出這個(gè)幾何體的三視圖;

          (2)如果在這個(gè)幾何體的表面噴上黃色的漆,則在所有的小正方體中,有 ________個(gè)正方體只有一個(gè)面是黃色,有 __________個(gè)正方體只有兩個(gè)面是黃色,有 ________個(gè)正方體只有三個(gè)面是黃色.

          (3)若現(xiàn)在你手頭還有一些相同的小正方體,如果保持圖的幾何體的俯視圖和左視圖不變,最多可以再添加幾個(gè)小正方體?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案