日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知AB是O的直徑,弦EDAB于點F,點C是劣弧AD上的動點(不與點A、D重合),連接BC交ED于點G.過點C作O的切線與ED的延長線交于點P.

          (1)求證:PC=PG;

          (2)當(dāng)點G是BC的中點時,求證:;

          (3)已知O的半徑為5,在滿足(2)的條件時,點O到BC的距離為,求此時CGP的面積.

          【答案】(1)證明詳見解析;(2)證明詳見解析;(3)10.

          【解析】

          試題分析:(1)連結(jié)OC,根據(jù)切線的性質(zhì)得OCPC,根據(jù)余角的性質(zhì)得到B=OCG,等量代換得到PCG=BGF,根據(jù)對頂角相等得BGF=PGC,于是得到PGC=PCG,根據(jù)等腰三角形的判定定理即可得到結(jié)論;

          (2)連結(jié)OG,由點G是BC的中點,根據(jù)垂徑定理的推論得OGBC,BG=CG,根據(jù)相似三角形的性質(zhì)得到,等量代換得到結(jié)論;

          (3)連結(jié)OE,OG=OG=,在RtOBG中,利用勾股定理計算出BG=,再利用可計算出BF,從而得到OF=1,根據(jù)三角形的面積公式即可得到結(jié)論.

          試題解析:(1)連結(jié)OC,如圖,

          PC為O的切線,

          OCPC,

          ∴∠OCG+PCG=90°,

          EDAB,

          ∴∠B+BGF=90°,

          OB=OC,

          ∴∠B=OCG,

          ∴∠PCG=BGF,

          BGF=PGC,

          ∴∠PGC=PCG,

          PC=PG;

          (2)解:CG、BF、BO三者之間的數(shù)量關(guān)系為.理由如下:

          連結(jié)OG,如圖,

          點G是BC的中點,

          OGBC,BG=CG,

          ∴∠OGB=90°,

          ∵∠OBG=GBF,

          RtBOGRtBGF,

          BG:BF=BO:BG,

          ,

          ;

          (3)解:連結(jié)OE,如圖,

          由(2)得OGBC,

          OG=

          在RtOBG中,OB=5,

          BG==

          由(2)得BG2=BOBF,

          BF==4,

          OF=1,

          FG==2,

          過P作PHBC于H,

          PC=PG,

          GH=CG=BG=,

          ∵∠PHG=BFG=90°,BGF=DGH,

          ∴△BFG∽△PHG,

          ,即,

          PH=,

          CGP=CGPH=××=10.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在正方形ABCD中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN

          下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

          證明:在邊AB上截取AE=MC,連ME

          正方形ABCD中,∠B=∠BCD=90°AB=BC

          ∴∠NMC=180°—∠AMN—∠AMB

          =180°—∠B—∠AMB

          =∠MAB=∠MAE

          (下面請你完成余下的證明過程)

          2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N∠ACP的平分線上一點,則當(dāng)∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

          3)若將(1)中的正方形ABCD”改為邊形ABCD…X”,請你作出猜想:當(dāng)∠AMN=°時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

          1 2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】可樂和奶茶含有大量的咖啡因,世界衛(wèi)生組織建議青少年每天攝入的咖啡因不能超過0.000085kg,將數(shù)據(jù)0.000085用科學(xué)記數(shù)法表示為____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】分解因式:(a+5)(a﹣5)+7(a+1)=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某同學(xué)5次數(shù)學(xué)小測驗的成績分別為(單位:分):90,85,90,95,100,則該同學(xué)這5次成績的眾數(shù)是( 。

          A.90 B.85 C.95 D.100

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算下列各式的值:
          (1)(+)﹣
          (2)(﹣3)2﹣|﹣|+
          (3)x2﹣121=0;
          (4)(x﹣5)3+8=0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小青在八年級上學(xué)期的數(shù)學(xué)成績?nèi)缦卤硭荆?/span>

          測評類型

          平時測驗

          期中考試

          期末考試

          成績

          86

          90

          81

          如果學(xué)期總評成績根據(jù)如圖所示的權(quán)重計算,小青該學(xué)期的總評成績是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線與y軸交于點C(0,3),與x軸交于點A、B,點A在點B的左邊,且B(3,0),AB=2

          (1)求該拋物線的函數(shù)關(guān)系式;

          (2)如果拋物線的對稱軸上存在一點P,使得APC的周長最小,求此時P點的坐標(biāo),并求出APC周長;

          (3)設(shè)D為拋物線上一點,E為對稱軸上一點,若以點A、B、D、E為頂點的四邊形是平行四邊形,求點D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,△ABC,∠ACB=2∠B,∠BAC的平分線AOBC于點D,HAO上一動點,過點H作直線l⊥AOH,分別交直線AB、AC、BC、于點N、E、M.

          (1)當(dāng)直線l經(jīng)過點C時(如圖2),求證:BN=CD;

          (2)當(dāng)MBC中點時,寫出CECD之間的等量關(guān)系并加以證明;

          (3)請直接寫出BN、CE、CD之間的等量關(guān)系

          查看答案和解析>>

          同步練習(xí)冊答案