日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,P是⊙O外一點(diǎn),PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長為(  )
          A.18πcmB.16πcmC.20πcmD.24πcm

          如圖,連接OA.

          ∵PA是⊙O的切線,
          ∴OA⊥AP,即∠OAP=90°.
          又∵PO=26cm,PA=24cm,
          ∴根據(jù)勾股定理,得
          OA=
          PO2-PA2
          =
          262-242
          =10cm,
          ∴⊙O的周長為:2π•OA=2π×10=20π(cm).
          故選C.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖:△ABC中,∠C=90°,AC=8cm,AB=10cm,點(diǎn)P由點(diǎn)C出發(fā)以每秒2cm的速度沿線段CA向點(diǎn)A運(yùn)動(不運(yùn)動到A點(diǎn)),⊙O的圓心在BP上,且⊙O分別與AB、AC相切,當(dāng)點(diǎn)P運(yùn)動2秒鐘時(shí),⊙O的半徑是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,AB、AC為⊙O的切線,B、C是切點(diǎn),延長OB到D,使BD=OB,連接AD,如果∠DAC=78°,那么∠ADO等于(  )
          A.70°B.64°C.62°D.51°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:如圖,AB為⊙O的直徑,PA、PC是⊙O的切線,A、C為切點(diǎn),∠BAC=30°.
          (1)求∠P的大小;
          (2)若AB=6,求PA的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          ⊙O是△ABC的外接圓,AB是直徑,過點(diǎn)C的切線與AB的延長線相交于點(diǎn)D,AE⊥DC交DC于點(diǎn)E.
          (1)求證:AC是∠EAB的平分線;
          (2)若圓的半徑為3,BD=2,DC=4,求AE和BC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,已知四邊形OABC是菱形,∠O=60°,點(diǎn)M是邊OA的中點(diǎn),以點(diǎn)O為圓心,r為半徑作⊙O分別交OA,OC于點(diǎn)D,E,連接BM.若BM=
          7
          DE
          的長是
          3
          π
          3
          .求證:直線BC與⊙O相切.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EFBC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D.下列四個(gè)結(jié)論:
          ①EF是△ABC的中位線.
          ②以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切;
          ③設(shè)OD=m,AE+AF=2n,則S△AEF=mn;
          ④∠BOC=90°+
          1
          2
          ∠A;
          其中正確的結(jié)論是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(-l,0)為圓心的圓與y軸,x軸分別交于點(diǎn)A、B、C、D,直線y=-
          3
          3
          x-
          5
          3
          3
          與⊙M相切于點(diǎn)H,交x軸于點(diǎn)E,交y軸于點(diǎn)F.
          (1)求⊙M的半徑;

          (2)如圖,弦HQ交x軸于點(diǎn)P,且PD:PH=4:
          7
          ,求點(diǎn)P的坐標(biāo);

          (3)如圖,點(diǎn)K為線段EC上一動點(diǎn)(不與E、C重合),連接BK交⊙M于點(diǎn)G,連接AG.過點(diǎn)M作MN⊥x軸交BK于N.是否存在這樣的點(diǎn)K,使得AG=MK?若存在,請求出GN的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:如圖,AB是⊙O的直徑,P是AB上的一點(diǎn)(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點(diǎn),過C點(diǎn)作⊙O的切線交直線QP于點(diǎn)D.則△CDQ是等腰三角形.
          對上述命題證明如下:
          證明:連接OC
          ∵OA=OC
          ∴∠A=∠1
          ∵CD切O于C點(diǎn)
          ∴∠OCD=90°
          ∴∠1+∠2=90°
          ∴∠A+∠2=90°
          在Rt△QPA中,∠QPA=90°
          ∴∠A+∠Q=90°
          ∴∠2=∠Q
          ∴DQ=DC
          即CDQ是等腰三角形.
          問題:對上述命題,當(dāng)點(diǎn)P在BA的延長線上時(shí),其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案