日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知二次函數(shù)y=mx2-(3m+
          4
          3
          )x+4

          (1)請(qǐng)你通過(guò)計(jì)算判斷:函數(shù)y=mx2-(3m+
          4
          3
          )x+4
          的圖象與x軸是否有交點(diǎn)?
          (2)設(shè)函數(shù)y=mx2-(3m+
          4
          3
          )x+4
          與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,請(qǐng)求出點(diǎn)A、B、C的坐標(biāo)(可用含m的代數(shù)式表示).
          (3)在(2)的條件下,若△ABC是等腰三角形,求二次函數(shù)的解析式.
          分析:(1)根據(jù)二次函數(shù)解析式的判別式進(jìn)行判斷;
          (2)分別令y=0,x=0,可求點(diǎn)A、B、C的坐標(biāo);
          (3)根據(jù)①AB=AC,B點(diǎn)在A點(diǎn)左邊,②AB=AC,B點(diǎn)在A點(diǎn)右邊,③當(dāng)AC=BC時(shí),④B在AC的垂直平分線上,四種情況分別求B的坐標(biāo),代入拋物線解析式求m的值,確定拋物線解析式.
          解答:解:(1)∵△=(3m+
          4
          3
          2-16m=(3m-
          4
          3
          2≥0,
          ∴拋物線與x軸有交點(diǎn);

          (2)令y=0,得mx2-(3m+
          4
          3
          )x+4=0,解得x=3或
          4
          3m
          ,
          令x=0,得y=4,
          ∴A(3,0),B(
          4
          3m
          ,0),C(0,4);

          (3)由(2)可知AC=5,
          ①當(dāng)AB=AC,B點(diǎn)在A點(diǎn)左邊時(shí),B(-2,0),
          代入拋物線解析式,得m×(-2)2-(3m+
          4
          3
          )×(-2)+4=0,解得m=-
          2
          3
          ,
          ②當(dāng)AB=AC,B點(diǎn)在A點(diǎn)右邊時(shí),B(8,0),
          代入拋物線解析式,得m×82-(3m+
          4
          3
          )×8+4=0,解得m=
          1
          6
          ,
          ③當(dāng)AC=BC時(shí),B(-3,0),
          代入拋物線解析式,得m×(-3)2-(3m+
          4
          3
          )×(-3)+4=0,解得m=-
          4
          9
          ,
          ④當(dāng)B在AC的垂直平分線上時(shí),AB=BC,
          設(shè)B(x,0),
          ∴(x-3)2=x2+42,
          ∴x=-
          7
          6

          ∴B(-
          7
          6
          ,0),
          代入拋物線解析式,得m×(-
          7
          6
          2-(3m+
          4
          3
          )×(-
          7
          6
          )+4=0,解得m=-
          8
          7
          ,
          ∴二次函數(shù)解析式為:y=-
          2
          3
          x2+
          2
          3
          x+4或y=
          1
          6
          x2-
          11
          6
          x+4或y=-
          4
          9
          x2+4或y=-
          8
          7
          x2-+
          44
          21
          x+4.
          點(diǎn)評(píng):本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是根據(jù)拋物線解析式求A、C兩點(diǎn)坐標(biāo),得出AC的長(zhǎng)度,根據(jù)AC為腰,為底邊分類(lèi)求B點(diǎn)坐標(biāo).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)y=2x2-mx-4的圖象與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)的倒數(shù)和為2,則m=
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知二次函數(shù)y=0.5x2+mx+n的圖象過(guò)點(diǎn)A(-3,6),并與x軸交于點(diǎn)B(-1,0)和精英家教網(wǎng)點(diǎn)C,頂點(diǎn)為P.
          (1)求這個(gè)拋物線的解析式;
          (2)求線段PC的長(zhǎng);
          (3)設(shè)D為線段OC上的一點(diǎn),且∠DPC=∠BAC,求點(diǎn)D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)y=ax2+bx+c與一次函數(shù)y=mx+n的圖象交點(diǎn)為(-1,2),(2,5),且二次函數(shù)的最小值為1,則這個(gè)二次函數(shù)的解析式為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)y=-
          1
          2
          x2+mx+
          3
          2
          的圖象經(jīng)過(guò)點(diǎn)A(-3,-6),并且該拋物線與x軸交于B、C兩點(diǎn),與y軸的交點(diǎn)為E,P為拋物線的頂點(diǎn).如圖所示.
          (1)求這個(gè)二次函數(shù)表達(dá)式.
          (2)設(shè)點(diǎn)D為線段OC上的一點(diǎn),且滿(mǎn)足∠DPC=∠BAC,說(shuō)明直線PC與直線AC的位置關(guān)系,并求出點(diǎn)D的坐標(biāo).
          (3)在(1)中的拋物線上是否存在一點(diǎn)F,使S△BCF=
          3
          4
          S△BCP?若存在,請(qǐng)直接寫(xiě)出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)y+x2+mx+m-2,說(shuō)明:無(wú)論m取何實(shí)數(shù),拋物線總與x軸有兩個(gè)交點(diǎn).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案