日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 矩形紙片ABCD中,AB=5,AD=4,將紙片折疊,使點B落在邊CD上的B′處,折痕為AE,點P是AE上的一點,且BP=BE,連接B′P.
          (1)求B′D的長;
          (2)求證:四邊形BPB′E的形狀為菱形;
          (3)若在折痕AE上存在一點到邊CD的距離與到點B的距離相等,請直接寫出此相等距離的值.
          分析:(1)由折疊的性質(zhì),可得AB′=AB=5,又由矩形紙片ABCD中,AB=5,AD=4,根據(jù)勾股定理即可求得B′D的長;
          (2)由BP=BE與折疊的性質(zhì),即可證得BP=B′P=B′E=BE,則可得四邊形BPB′E的形狀為菱形;
          (3)由四邊形BPB′E的形狀為菱形,可得點P到邊CD的距離與到點B的距離相等,然后設(shè)BP=x,由勾股定理可得:x2=(4-x)2+22,解此方程即可求得答案.
          解答:(1)解:∵四邊形ABCD是矩形,
          ∴∠D=90°,
          由折疊的性質(zhì)可得:AB′=AB=5,
          在Rt△ADB′中,B′D=
          AB2-AD2
          =3;

          (2)證明:由折疊的性質(zhì)可得:BP=B′P,BE=B′E,
          ∵BP=BE,
          ∴BP=B′P=B′E=BE,
          ∴四邊形BPB′E的形狀為菱形;

          (3)存在.
          ∵四邊形BPB′E的形狀為菱形,
          ∴BE∥B′P,BP=B′P,
          ∴BC⊥CD,
          ∴B′P⊥CD,
          ∴點P到邊CD的距離與到點B的距離相等,
          設(shè)BP=x,
          則B′E=x,
          ∵B′C=CD-B′D=5-3=2,CE=BC-BE=4-x,
          在Rt△B′CE中,B′E2=CE2+B′C2,
          ∴x2=(4-x)2+22,
          解得:x=2.5,
          ∴此相等距離的值為2.5.
          點評:此題考查了矩形的性質(zhì)、折疊的性質(zhì)、勾股定理以及菱形的判定與性質(zhì).此題難度較大,注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=3cm,BC=4cm,若要在該紙片中剪下兩個外切的圓⊙O1和⊙O2,要求⊙O1和⊙O2的圓心均在對角線BD上,且⊙O1和⊙O2分別與BC、AD相切,則O1O2的長為(  )
          A、
          5
          3
          cm
          B、
          5
          2
          cm
          C、
          15
          8
          cm
          D、2cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,矩形紙片ABCD中,AD=9,AB=3,將其折疊,使點D與點B重合,折痕為EF,那么折痕EF的長為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在矩形紙片ABCD中,將矩形紙片沿著對角線AC折疊,使點D落在點F處,設(shè)AF與BC相交于點E.
          (1)試說明△ABE≌△CFE;(2)若AB=6,AD=8,求AE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖①,矩形紙片ABCD中,AD=14cm,AB=10cm.
          (1)將矩形紙片ABCD沿折線AE對折,使AB邊與AD邊重合,B點落在F點處,如圖②所示,再剪去四邊形CEFD,余下部分如圖③所示,若將余下的紙片展開,則所得的四邊形ABEF的形狀是
           
          ,它的面積為
           
          cm2;
          (2)將圖③中的紙片沿折線AG對折,使AF與AE邊重合,F(xiàn)點落在H點處.如圖④所示,再沿HG將△HGE剪下,余下的部分如圖⑤所示,把圖⑤的紙片完全展開,請你在圖⑥的矩形ABCD中畫出展開后圖形的示意圖,剪去的部分用陰影表示,折痕用虛線表示;
          (3)求圖④中剪去的△HGE的展開圖的面積(結(jié)果用含有根式的式子表示).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•龍巖)如圖①,在矩形紙片ABCD中,AB=
          3
          +1,AD=
          3

          (1)如圖②,將矩形紙片向上方翻折,使點D恰好落在AB邊上的D′處,壓平折痕交CD于點E,則折痕AE的長為
          6
          6
          ;
          (2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點F,則四邊形B′FED′的面積為
          3
          -
          1
          2
          3
          -
          1
          2
          ;
          (3)如圖④,將圖②中的△AED′繞點E順時針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過頂點B,求弧D′D″的長.(結(jié)果保留π)

          查看答案和解析>>

          同步練習(xí)冊答案