日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          已知拋物線y=ax2+bx+c的圖象交x軸于點A(x0,0)和點B(2,0),與y軸的正半軸交于點C,其對稱軸是直線x=-1,tan∠BAC=2,點A關于y軸的對稱點為點D.
          (1)確定A、C、D三點的坐標;
          (2)求過B、C、D三點的拋物線的解析式;
          (3)若過點(0,3)且平行于x軸的直線與(2)小題中所求拋物線交于M、N兩點,以MN為一邊,拋物線上任意一點P(x,y)為頂點作平行四邊形,若平行四邊形的面積為S,寫出S關于P點縱坐標y的函數解析式;
          (4)當
          12
          <x<4時,(3)小題中平行四邊形的面積是否有最大值?若有,請求出;若無,請說明理由.
          分析:(1)因為已知B點坐標和對稱軸,所以可根據對稱軸公式求出A點坐標;根據銳角三角函數的定義可求出C點坐標,根據x軸上的點關于y軸對稱的特點可求出D點坐標.
          (2)因為B、D兩點為拋物線與x軸的交點,所以可設出二次函數的交點式,再用待定系數法求出函數的解析式.
          (3)根據過點(0,3)且平行于x軸的直線與(2)中的拋物線相交于M.N,可求出M、N的坐標,及兩點之間的距離,再根據拋物線的頂點坐標求出P點縱坐標y的取值范圍,根據其取值范圍即可求出S與y之間的函數關系式.
          (4)因為MN之間的距離為定值,故只要在
          1
          2
          <x<4范圍內|y|最大,則平行四邊形的面積最大.根據(3)中S與y之間的函數關系式即可求出S的最大值.
          解答:精英家教網解:(1)∵點A與點B關于直線x=-1對稱,點B的坐標是(2,0)
          ∴點A的橫坐標是
          x0+2
          2
          =-1,x0=-4,
          故點A的坐標是(-4,0)
          ∵tan∠BAC=2即
          OC
          |OA|
          =2,可得OC=8
          ∴C(0,8)
          ∵點A關于y軸的對稱點為D
          ∴點D的坐標是(4,0);

          (2)設過三點的拋物線解析式為y=a(x-2)(x-4),
          代入點C(0,8),解得a=1.
          ∴拋物線的解析式是y=x2-6x+8;

          (3)∵拋物線y=x2-6x+8與過點(0,3)平行于x軸的直線相交于M點和N點
          ∴M(1,3),N(5,3),
          而拋物線的頂點為(3,-1),精英家教網
          當y>3時,
          S=4(y-3)=4y-12,
          當-1≤y<3時,
          S=4(3-y)=-4y+12;

          (4)以MN為一邊,P(x,y)為頂點,且當<x<4的平行四邊形面積最大,只要點P到MN的距離h最大
          ∴當x=3,y=-1時,h=4,
          S=4h=4×4=16,
          ∴滿足條件的平行四邊形面積有最大值16.
          點評:此題比較復雜,閱讀量較大,把動點問題與二次函數的性質相結合,有一定的綜合性,但難度適中,是一道較好的題目.
          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c(a≠0)經過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網與x軸的另一個交點為E.
          (1)求拋物線的解析式;
          (2)用配方法求拋物線的頂點D的坐標和對稱軸;
          (3)求四邊形ABDE的面積.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
           
          ,k=
           

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有( 。

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          精英家教網如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
          2
          ,b+ac=3.
          (1)求b的值;
          (2)求拋物線的解析式.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          (2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經過第三象限.
          (1)使用a、c表示b;
          (2)判斷點B所在象限,并說明理由;
          (3)若直線y2=2x+m經過點B,且于該拋物線交于另一點C(
          ca
          ,b+8
          ),求當x≥1時y1的取值范圍.

          查看答案和解析>>

          同步練習冊答案