日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在中,對角線,交于點,雙曲線經(jīng)過,兩點若的面積為,則的值是(

          A.B.C.D.

          【答案】B

          【解析】

          設E的坐標是(m,n),則mn=k,平行四邊形ABOC中E是OA的中點,則A的坐標是:(2m,2n),C的縱坐標是2n,表示出C的橫坐標,則可以得到AC即OB的長,然后根據(jù)平行四邊形的面積公式即可求得k的值.

          解:設E的坐標是(m,n),則mn=k,
          ∵平行四邊形ABOC中E是OA的中點,
          ∴A的坐標是:(2m,2n),C的縱坐標是2n,
          把y=2n代入 得:x=,即C的橫坐標是:
          ∴OB=AC=-2m,OB邊上的高是2n,
          ∴(,-2m)2n=10,
          即k-4mn=10,
          ∴k-4k=10,
          解得:k=-
          故選:B.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,等邊三角形的頂點,分別在反比例函數(shù)圖象的兩個分支上,點在反比例函數(shù)的圖象上,軸.當的面積最小時,的值為_______

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,直線軸交于點,與軸交于點,拋物線經(jīng)過點

          (1)、滿足的關系式及的值.

          (2)時,若的函數(shù)值隨的增大而增大,求的取值范圍.

          (3)如圖,當時,在拋物線上是否存在點,使的面積為1?若存在,請求出符合條件的所有點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖(1),已知點在正方形的對角線上,垂足為點,垂足為點

          1)證明與推斷:

          求證:四邊形是正方形;

          推斷:的值為_ _;

          2)探究與證明:

          將正方形繞點順時針方向旋轉,如圖(2)所示,試探究線段之間的數(shù)量關系,并說明理由;

          3)拓展與運用:

          ,正方形在繞點旋轉過程中,當三點在一條直線上時,則

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,點為坐標原點.拋物線軸于、兩點,交軸于點,直線經(jīng)過、兩點.

          1)求拋物線的解析式;

          2)過點作直線軸交拋物線于另一點,過點軸于點,連接,求的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在中,,點,分別是邊上的點,且

          1)若,,設,求關于的函數(shù)關系式;

          2)如圖,于點,于點于點,點在線段上,,,,,求的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,兩個全等的等腰直角三角形放置在平面直角坐標系中,軸上,,,反比例函數(shù)的圖象經(jīng)過點

          1)求反比例函數(shù)的解析式;

          2)把沿射線移動,當點落在圖象上的時,求點的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校用隨機抽樣的方法在九年級開展了你是否喜歡網(wǎng)課的調(diào)查,并將得到的數(shù)據(jù)整理成了以下統(tǒng)計圖(不完整).

          1)此次共調(diào)查了 名學生;

          2)請將條形統(tǒng)計圖補充完整;

          3)若該學校九年級共有300名學生,請你估計其中非常喜歡網(wǎng)課的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,為了測量建筑物CD、EF的高度,在直線CE上選取觀測點AB,AC的距離為40米.從A、B測得建筑物的頂部D的仰角分別為51.34°、68.20°,從B、D測得建筑物的頂部F的仰角分別為64.43°、26.57°

          1)求建筑物CD的高度;

          2)求建筑物EF的高度.

          (參考數(shù)據(jù):tan51.34°1.25,tan68.20°2.5tan64.43°2,tan26.57°0.5

          查看答案和解析>>

          同步練習冊答案