日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 4、正整數(shù)a,b,c是等腰三角形三邊的長(zhǎng),并且a+bc+b+ca=24,則這樣的三角形有( 。
          分析:先將a+bc+b+ca=24 可以化為 (a+b)(c+1)=24,然后根據(jù)24分解為大于2的兩個(gè)正整數(shù)的乘積有幾種組合討論是否符合題意即可得出答案.
          解答:解:a+bc+b+ca=24 可以化為 (a+b)(c+1)=24,其中a,b,c都是正整數(shù),并且其中兩個(gè)數(shù)相等,
          令a+b=A,c+1=C 則A,C為大于2的正整數(shù),
          那么24分解為大于2的兩個(gè)正整數(shù)的乘積有幾種組合2×12,3×8,4×6,6×4,3×8,2×12,
          ①、A=2,C=12時(shí),c=11,a+b=2,無法得到滿足等腰三角形的整數(shù)解;
          ②、A=3,C=8時(shí),c=7,a+b=3,無法得到滿足等腰三角形的整數(shù)解;
          ③、A=4,C=6時(shí),c=6,a+b=4,無法得到滿足等腰三角形的整數(shù)解;
          ④、A=6,C=4時(shí),c=3,a+b=6,可以得到a=b=c=3,可以組成等腰三角形;
          ⑤、A=8,C=3時(shí),c=2,a+b=8,可得a=b=4,c=2,可以組成等腰三角形,a=b=4是兩個(gè)腰;
          ⑥、A=12,C=2時(shí),可得 a=b=6,c=1,可以組成等腰三角形,a=b=6是兩個(gè)腰.
          ∴一共有3個(gè)這樣的三角形.
          故選C.
          點(diǎn)評(píng):本題考查數(shù)的整除性及等腰三角形的知識(shí),難度一般,在解答本題時(shí)將原式化為因式相乘的形式及將24分解為大于2的兩個(gè)正整數(shù)的乘積有幾種組合是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀材料并解答問題:
          我國(guó)是最早了解和應(yīng)用勾股定理的國(guó)家之一,古代印度、希臘、阿拉伯等許多國(guó)家也都很重視對(duì)勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達(dá)哥拉斯定理”.
          關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
          方法1:若m為奇數(shù)(m≥3),則a=m,b=
          1
          2
          (m2-1)和c=
          1
          2
          (m2+1)是勾股數(shù).
          方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
          (1)在以上兩種方法中任選一種,證明以a,b,c為邊長(zhǎng)的△ABC是直角三角形;
          (2)請(qǐng)根據(jù)方法1和方法2按規(guī)律填寫下列表格:
          精英家教網(wǎng)
          (3)某園林管理處要在一塊綠地上植樹,使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹,且每個(gè)三角形的各邊長(zhǎng)之比為5:12:13,那么這四個(gè)直角三角形的邊長(zhǎng)共需植樹
           
          棵.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖是芳芳設(shè)計(jì)可自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤,將其等分為10個(gè)扇形,每個(gè)扇形寫有1個(gè)有理數(shù).想想看,轉(zhuǎn)得下列各數(shù)的概率是多少?
          (1)轉(zhuǎn)得正數(shù);
          (2)轉(zhuǎn)得正整數(shù);
          (3)轉(zhuǎn)得絕對(duì)值<6的數(shù);
          (4)轉(zhuǎn)得絕對(duì)值≥8的數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•新華區(qū)一模)已知:等邊△ABC的面積為S,Dn,En,F(xiàn)n(n為正整數(shù)0分別是AB,BC,CA邊上的點(diǎn),連接DnEn,EnFn,F(xiàn)nDn,可得△DnEnFn
          如圖1,當(dāng)AD1=BE1=CF1=
          1
          2
          AB時(shí),我們?nèi)菀椎玫健鱀1E1F1是等邊三角形,且SAD1F1=S△D1E1F1=
          1
          4
          S.
          探究論證:
          (1)如圖2,當(dāng)AD2=BE2=CF2=
          1
          3
          AB時(shí),
          ①△D2E2F2
          等邊
          等邊
          三角形(填寫“等腰”或“等邊”或“不等邊”);
          SAD2F2=
          2
          9
          S
          2
          9
          S
          S△D2E2F2=
          1
          3
          S
          1
          3
          S
          (用含S的代數(shù)式表示);
          ③請(qǐng)說明以上結(jié)論的正確性.
          猜想發(fā)現(xiàn):
          (2)如圖3,當(dāng)ADn=BEn=CFn=
          1
          n+1
          AB時(shí),
          ①△DnEnFn
          等邊
          等邊
          三角形(填寫“等腰”或“等邊”或“不等邊”);
          S△ADnFn=
          n
          (n+1)2
          S
          n
          (n+1)2
          S
          ;S△DnEnFn=
          n2-n+1
          (n+1)2
          S
          n2-n+1
          (n+1)2
          S
          (用含S的代數(shù)式表示).
          實(shí)際應(yīng)用:
          (3)學(xué)校有一塊面積為49m2的等邊△ABC空地,按如圖4所示分割,其中AD6=BE6=CF6=
          1
          7
          AB,計(jì)劃在△D6E6F6內(nèi)栽種花卉,其余地方鋪草坪,則栽種花卉(即陰影部分)的面積為多少m2?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知正方形ABCD的邊長(zhǎng)AB=k(k是正整數(shù)),等邊三角形PAE的頂點(diǎn)P在正方形內(nèi),頂點(diǎn)E在邊AB上,且AE=1.將等邊三角形PAE在正方形內(nèi)按如圖中所示的方式,沿著正方形的邊AB、BC、CD、DA、AB、…連續(xù)地翻轉(zhuǎn)n次,使頂點(diǎn)P第一次回到原來的起始位置.
          ①如果k=1,那么頂點(diǎn)P第一次回到原來的起始位置時(shí),△PAE沿正方形的邊連續(xù)翻轉(zhuǎn)的次數(shù)n=
          12
          12
          ;
          ②如果頂點(diǎn)P第一次回到原來的起始位置時(shí),等邊三角形PAE沿正方形的邊連續(xù)翻轉(zhuǎn)的次數(shù)是84,那么正方形ABCD的邊長(zhǎng)k=
          7或21
          7或21

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          我國(guó)是最早了解和應(yīng)用勾股定理的國(guó)家之一,古代印度、希臘、阿拉伯等許多國(guó)家也都很重視對(duì)勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達(dá)哥拉斯定理”.
          關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
          方法1:若m為奇數(shù)(m≥3),則a=m,b=數(shù)學(xué)公式(m2-1)和c=數(shù)學(xué)公式(m2+1)是勾股數(shù).
          方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
          (1)在以上兩種方法中任選一種,證明以a,b,c為邊長(zhǎng)的△ABC是直角三角形;
          (2)請(qǐng)根據(jù)方法1和方法2按規(guī)律填寫下列表格:

          (3)某園林管理處要在一塊綠地上植樹,使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹,且每個(gè)三角形的各邊長(zhǎng)之比為5:12:13,那么這四個(gè)直角三角形的邊長(zhǎng)共需植樹______棵.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案