日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,Rt△ABC中,∠A=90°,tanB=
          3
          4
          ,點P在線段AB上運動,點Q、R分別在線段BC、AC上,且使得四邊形APQR是矩形.設(shè)AP的長為x,矩形APQR的面積為y,已知y是x的函數(shù),其圖象是過點(12,36)的拋物線的一部分(如圖2所示).

          (1)求AB的長;
          (2)當(dāng)AP為何值時,矩形APQR的面積最大,并求出最大值.
          為了解決這個問題,孔明和研究性學(xué)習(xí)小組的同學(xué)作了如下討論:
          張明:圖2中的拋物線過點(12,36)在圖1中表示什么呢?
          李明:因為拋物線上的點(x,y)是表示圖1中AP的長與矩形APQR面積的對應(yīng)關(guān)系,那么,(12,36)表示當(dāng)AP=12時,AP的長與矩形APQR面積的對應(yīng)關(guān)系.
          趙明:對,我知道縱坐標(biāo)36是什么意思了!
          孔明:哦,這樣就可以算出AB,這個問題就可以解決了.請根據(jù)上述對話,幫他們解答這個問題.
          (1)當(dāng)AP=12時,AP•PQ=36,
          ∴PQ=3,
          又在Rt△BPQ中,tanB=
          3
          4
          ,
          PQ
          PB
          =
          3
          4

          ∴PB=4.
          ∴AB=16.

          (2)若AP=x,則PB=16-x,PQ=
          3
          4
          (16-x),
          ∴y=
          3
          4
          (16-x)x,
          整理得y=-
          3
          4
          (x-8)2+48.
          ∴當(dāng)x=8時,y最大值=48.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,Rt△ABC中,斜邊AB在x軸上,點C在y軸上,且OC=2,OA:OB=1:4,拋物線y=ax2+bx+c經(jīng)過A、B、C三點.
          (1)求此拋物線的解析式;
          (2)若直線y=x+b與Rt△ABC相交,所截得的三角形面積是原Rt△ABC面積的
          3
          10
          ,求b的值;
          (3)將△OAC繞原點O逆時針旋轉(zhuǎn)90°后得到△OEF,如圖2,再將△OEF繞平面內(nèi)某點旋轉(zhuǎn)180°后得△MNQ(點M、N、Q分別與點E、F、O對應(yīng)),使點M,N在拋物線上,求點M,N的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線y=
          1
          2
          x2-mx+2m-
          7
          2

          (1)試說明:無論m為何實數(shù),該拋物線與x軸總有兩個不同的交點.
          (2)如圖,當(dāng)拋物線的對稱軸為直線x=3時,拋物線的頂點為點C,直線y=x-1與拋物線交于A、B兩點,并與它的對稱軸交于點D.
          ①拋物線上是否存在一點P使得四邊形ACPD是正方形?若存在,求出點P的坐標(biāo);若不存在,說明理由;
          ②平移直線CD,交直線AB于點M,交拋物線于點N,通過怎樣的平移能使得以C、D、M、N為頂點的四邊形是平行四邊形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標(biāo)原點O,作OA⊥PQ,垂足為A,且OA=
          2
          ,b+ac=3.
          (1)求b的值;
          (2)求拋物線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,半徑分別為3
          3
          3
          的⊙O1和⊙O2外切于原點O,在x軸上方的兩圓的外公切線AB與⊙O1和⊙O2分別切于點A、B,直線AB交y軸于點C.O2D⊥O1A于點D.
          (1)求∠O1O2D的度數(shù);
          (2)求點C的坐標(biāo);
          (3)求經(jīng)過O1、C、O2三點的拋物線的解析式;
          (4)在拋物線上是否存在點P,使△PO1O2為直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線與y軸交于點A(0,4),與x軸交于B、C兩點.其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
          (1)求拋物線的解析式;
          (2)直線AC上是否存在點D,使△BCD為直角三角形.若存在,求所有D點坐標(biāo);反之說理;
          (3)點P為x軸上方的拋物線上的一個動點(A點除外),連PA、PC,若設(shè)△PAC的面積為S,P點橫坐標(biāo)為t,則S在何范圍內(nèi)時,相應(yīng)的點P有且只有1個.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          函數(shù)y=-
          3
          16
          x2+3的圖象與x軸正半軸交于點A,與y軸交于點B,過點A、B分別作y軸、x軸的平行線交直線y=kx于點M、N.
          (1)用k表示S△OBN:S△MAO的值.
          (2)當(dāng)S△OBN=
          1
          4
          S△MAO時,求圖象過點M、N、B的二次函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          某涵洞的截面是拋物線型,如圖所示,在圖中建立的直角坐標(biāo)系中,拋物線的解析式為y=-
          1
          4
          x2,當(dāng)涵洞水面寬AB為12米時,水面到橋拱頂點O的距離為______米.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          山西特產(chǎn)專賣店銷售核桃,其進(jìn)價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克.若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
          (1)若該專賣店銷售這種核桃要想平均每天獲利2240元,每千克核桃應(yīng)降價多少元?
          (2)在(1)問的條件下,平均每天獲利不變,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?
          (3)寫出每天總利潤y與降價x元的函數(shù)關(guān)系式,為了使每天的利潤最大,應(yīng)降價多少元?

          查看答案和解析>>

          同步練習(xí)冊答案