日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖:點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=α.將線段OC繞點C按順時針方向旋轉(zhuǎn)60°得到線段CD,連接OD、AD.
          (1)求證:AD=BO;
          (2)當α=150°時,試判斷△AOD的形狀,并說明理由;
          (3)探究:當α為多少度時(直接寫出答案),△AOD是等腰三角形?
          分析:(1)由旋轉(zhuǎn)的性質(zhì)就可以得出△BOC≌△ADC就可以得出AD=BO;
          (2)由旋轉(zhuǎn)可以得出 OC=DC,∠DCO=60°,就可以得出△ODC是等邊三角形,就可以得出∠ODC=60°,從而得出∠ADO=90°,而得出△AOD的形狀;
          (3)由條件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,當∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA時分別求出a的值即可.
          解答:解:(1)∵△ABC是等邊三角形,
          ∴BC=AC,∠ACB=60°,
          ∵OC繞點C按順時針方向旋轉(zhuǎn)60°,
          ∴△BOC≌△ADC,
          ∴AD=BO;

          (2)△AOD是直角三角形.
          理由:∵△BOC≌△ADC,
          ∴DC=OC.∠BOC=∠ADC=150°
          ∵∠DCO=60°,
          ∴△OCD是等邊三角形.
          ∴∠ODC=60°
          ∴∠ADC=90°,
          ∴△AOD是直角三角形.

          (3)∵∠AOB=110°,∠BOC=α
          ∴∠AOC=250°-a.
          ∵△OCD是等邊三角形,
          ∴∠DOC=∠ODC=60°,
          ∴∠ADO=a-60°,∠AOD=190°-a,
          當∠DAO=∠DOA時,
          2(190°-a)+a-60°=180°,
          解得:a=140°
          當∠AOD=ADO時,
          190°-a=a-60°,
          解得:a=125°,
          當∠OAD=∠ODA時,
          190°-a+2(a-60°)=180°,
          解得:a=110°
          ∴α=110°,α=140°,α=125°.
          點評:本題考查了等邊三角形的判定急性子的運用,旋轉(zhuǎn)的性質(zhì)的運用,直角三角形的判定,全等三角形的判定及性質(zhì)的運用,等腰三角形的判定及性質(zhì)的運用,解答時證明三角形全等是關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          21、如圖,點D是等邊三角形ABC內(nèi)的一點,將△BDC繞點C順時針旋轉(zhuǎn)60°,試畫出旋轉(zhuǎn)后的三角形,并指出圖中的全等圖形以及它們的對應(yīng)頂點、對應(yīng)邊和對應(yīng)角.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          16、如圖,點P是等邊三角形ABC內(nèi)一點,BP=5cm,△PAB繞點B旋轉(zhuǎn)后能與△MCB重合,連接PM,則PM=
          5
          cm.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          21、如圖,點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=a.以O(shè)C為一邊作等邊三角形OCD,連接AC、AD.
          (1)當a=150°時,試判斷△AOD的形狀,并說明理由;
          (2)探究:當a為多少度時,△AOD是等腰三角形?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2011•清流縣質(zhì)檢)星期天,小明在解答下列題目時卡殼了.
          題目1:如圖①,在△ABC中,AC=BC,∠ACB=90°,O為△ABC內(nèi)的一點,OC=1,OA=
          3
          ,OB=
          5
          .求∠AOC的度數(shù).
          小明去請教小穎正在解答下列題目.
          題目2:如圖②,點O是等邊三角形ABC內(nèi)的一點,將△BCO繞C順時針方向旋轉(zhuǎn)60°得到△ADC,連接OD.
          (1)試判斷△COD的形狀,并說明理由;
          (2)當∠COB=150°時,試判斷△AOD的形狀,并寫出OA、OB、OC三者之間的等量關(guān)系式.
          小穎說:“等等,等我做完了,我們一起來看.”小明看完,小穎做完后高興地說:“哈哈,太好了,我會了.”聰明的同學,你能先解答完題目2,再根據(jù)解答所得到的啟迪來完成題目1嗎?寫出你的解答過程.

          查看答案和解析>>

          同步練習冊答案