日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•襄陽)如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點(diǎn).
          (1)求AD的長及拋物線的解析式;
          (2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似?
          (3)點(diǎn)N在拋物線對稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
          分析:(1)根據(jù)折疊圖形的軸對稱性,△CED、△CBD全等,首先在Rt△CEO中求出OE的長,進(jìn)而可得到AE的長;在Rt△AED中,AD=AB-BD、ED=BD,利用勾股定理可求出AD的長.進(jìn)一步能確定D點(diǎn)坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式.
          (2)由于∠DEC=90°,首先能確定的是∠AED=∠OCE,若以P、Q、C為頂點(diǎn)的三角形與△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在這兩種情況下,分別利用相似三角形的對應(yīng)邊成比例求出對應(yīng)的t的值.
          (3)由于以M,N,C,E為頂點(diǎn)的四邊形,邊和對角線都沒明確指出,所以要分情況進(jìn)行討論:
          ①EC做平行四邊形的對角線,那么EC、MN必互相平分,由于EC的中點(diǎn)正好在拋物線對稱軸上,所以M點(diǎn)一定是拋物線的頂點(diǎn);
          ②EC做平行四邊形的邊,那么EC、MN平行且相等,首先設(shè)出點(diǎn)N的坐標(biāo),然后結(jié)合E、C的橫、縱坐標(biāo)差表示出M點(diǎn)坐標(biāo),再將點(diǎn)M代入拋物線的解析式中,即可確定M、N的坐標(biāo).
          解答:解:(1)∵四邊形ABCO為矩形,
          ∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.
          由題意,△BDC≌△EDC.
          ∴∠B=∠DEC=90°,EC=BC=10,ED=BD.
          由勾股定理易得EO=6.
          ∴AE=10-6=4,
          設(shè)AD=x,則BD=ED=8-x,由勾股定理,得x2+42=(8-x)2,
          解得,x=3,∴AD=3.
          ∵拋物線y=ax2+bx+c過點(diǎn)D(3,10),C(8,0),O(0,0)
          9a+3b=10
          64a+8b=0

          解得
          a=-
          2
          3
          b=
          16
          3

          ∴拋物線的解析式為:y=-
          2
          3
          x2+
          16
          3
          x.

          (2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,
          ∴∠DEA=∠OCE,
          由(1)可得AD=3,AE=4,DE=5.
          而CQ=t,EP=2t,∴PC=10-2t.
          當(dāng)∠PQC=∠DAE=90°,△ADE∽△QPC,
          CQ
          AE
          =
          CP
          DE
          ,即
          t
          4
          =
          10-2t
          5
          ,
          解得t=
          40
          13

          當(dāng)∠QPC=∠DAE=90°,△ADE∽△PQC,
          PC
          AE
          =
          CQ
          DE
          ,即
          10-2t
          4
          =
          t
          5

          解得t=
          25
          7

          ∴當(dāng)t=
          40
          13
          25
          7
          時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似.

          (3)假設(shè)存在符合條件的M、N點(diǎn),分兩種情況討論:

          EC為平行四邊形的對角線,由于拋物線的對稱軸經(jīng)過EC中點(diǎn),若四邊形MENC是平行四邊形,那么M點(diǎn)必為拋物線頂點(diǎn);
          則:M(4,
          32
          3
          );而平行四邊形的對角線互相平分,那么線段MN必被EC中點(diǎn)(4,3)平分,則N(4,-
          14
          3
          );
          ②EC為平行四邊形的邊,則EC
          .
          MN,設(shè)N(4,m),則M(4-8,m+6)或M(4+8,m-6);
          將M(-4,m+6)代入拋物線的解析式中,得:m=-38,此時(shí) N(4,-38)、M(-4,-32);
          將M(12,m-6)代入拋物線的解析式中,得:m=-26,此時(shí) N(4,-26)、M(12,-32);
          綜上,存在符合條件的M、N點(diǎn),且它們的坐標(biāo)為:
          ①M(fèi)1(-4,-32),N1(4,-38);②M2(12,-32),N2(4,-26);③M3(4,
          32
          3
          ),N3(4,-
          14
          3
          ).
          點(diǎn)評:考查了二次函數(shù)綜合題,題目涉及了圖形的折疊變換、相似三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)等重點(diǎn)知識.后兩問的情況較多,需要進(jìn)行分類討論,以免漏解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長線交CB的延長線于點(diǎn)M,EB的延長線交AD的延長線于點(diǎn)N.
          求證:AM=AN.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•襄陽)如圖,從一個(gè)直徑為4
          3
          dm的圓形鐵皮中剪出一個(gè)圓心角為60°的扇形ABC,并將剪下來的扇形圍成一個(gè)圓錐,則圓錐的底面半徑為
          1
          1
          dm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•襄陽)如圖,在梯形ABCD中,AD∥BC,E為BC的中點(diǎn),BC=2AD,EA=ED=2,AC與ED相交于點(diǎn)F.
          (1)求證:梯形ABCD是等腰梯形;
          (2)當(dāng)AB與AC具有什么位置關(guān)系時(shí),四邊形AECD是菱形?請說明理由,并求出此時(shí)菱形AECD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•襄陽)如圖,ABCD是正方形,G是BC上(除端點(diǎn)外)的任意一點(diǎn),DE⊥AG于點(diǎn)E,BF∥DE,交AG于點(diǎn)F.下列結(jié)論不一定成立的是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•襄陽)如圖,直線y=k1x+b與雙曲線y=
          k2
          x
          相交于A(1,2)、B(m,-1)兩點(diǎn).
          (1)求直線和雙曲線的解析式;
          (2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點(diǎn),且x1<x2<0<x3,請直接寫出y1,y2,y3的大小關(guān)系式;
          (3)觀察圖象,請直接寫出不等式k1x+b>
          k2
          x
          的解集.

          查看答案和解析>>

          同步練習(xí)冊答案