日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          如圖所示,已知直線y=kx+m與x軸、y軸分別交于A、C兩點,拋物線y=-x2+bx+c經過A、C兩點,點B是拋物線與x軸的另一個交點,當時,y取最大值

          (1)求拋物線和直線的解析式;

          (2)設點P是直線AC上一點,且S△ABP:S△BPC=1∶3,求點P的坐標;

          (3)若直線與(1)中所求的拋物線交于M、N兩點,問:

          ①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由;

          ②猜想當∠MON>90°時,a的取值范圍(不寫過程,直接寫結論).

          (參考公式:在平面直角坐標系中,若M(x1,y1),N(x2,y2),則M,N兩點間的距離為)

          答案:
          解析:

            解:(1)由題意得

            解得

            ∴拋物線的解析式為

            ∴

            ∴直線的解析式為(2分)

            (2)分兩種情況:

           、冱c在線段上時,過軸,垂足為

            ∵

            ∴

            ∵

            ∴

            ∴,

            ∴

            ∴

            ②點在線段的延長線上時,過軸,垂足為

            ∵

            ∴

            ∵

            ∴

            ∴,

            ∴

            ∴

            綜上所述,(4分)

            (3)①方法1:假設存在的值,使直線與(1)中所求的拋物線交于、兩點(的左側),使得

            由

            得

            ∴,

            又

            ∴

            

            

            ∵

            ∴

            ∴

            ∴

            ∴

            即

            ∴

            ∴存在使得(3分)

            方法2:假設存在的值,使直線與(1)中所求的拋物線交于兩點(軸上側),使得,如圖,過,過

            可證明

            ∴

            即

            ∴

            即

            以下過程同上

           、诋時,(1分)


          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.
          (1)直接寫出直線L的解析式;
          (2)設OP=t,△OPQ的面積為S,求S關于t的函數關系式;并求出當0<t<2時,S的最大值;
          (3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角精英家教網三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          4、如圖所示,已知直線a∥b,被直線L所截,如果∠1=69°36′,那么∠2=
          69
          36
          分.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          如圖所示,已知直線AB過點C(1,2),且與x軸、y軸分別交于點A、B,CD⊥x軸于D,CE⊥y軸于E,CF交y軸于G,交x軸于F.(F在原點O的左側)
          (1)當直線AB的位置正好使得△ACD≌△CBE時,求A點的坐標及直線AB的解析式.
          (2)若S四邊形ODCE=S△CDF,當直線AB的位置正好使得FC⊥AB時,求A點的坐標及BC的長.
          (3)在(2)成立的前提下,將△FOG延y軸對折得△F′O′G′(對折后F、O、G的對應點分別為F′、O′、G′),將△F′O′G′沿x軸正方向精英家教網平移,設平移過程中△F′O′G′與四邊形ODCE重疊部分面積為y,OO′的長為x(0≤x≤1),求y與x的函數關系式.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          精英家教網如圖所示,已知直線y=kx-2經過M點,求此直線與x軸交點坐標和直線與兩坐標軸圍成三角形的面積.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          如圖所示:已知直線y=
          1
          2
          x
          與雙曲線y=
          k
          x
          (k>0)
          交于A、B兩點,且點A的橫坐標為4.
          (1)求k的值;
          (2)過A點作AC⊥x軸于C點,求△AOC的面積.

          查看答案和解析>>

          同步練習冊答案