日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0),二次函數(shù)y=x2的圖象記為拋物線l1
          精英家教網(wǎng)
          (1)平移拋物線l1,使平移后的拋物線經(jīng)過A、B兩點(diǎn),記為拋物線l2,求拋物線l2的函數(shù)表達(dá)式;
          (2)設(shè)拋物線l2的頂點(diǎn)為C,請你判斷y軸上是否存在點(diǎn)K,使得∠BKC=90°,若存在,求出K點(diǎn)坐標(biāo),若不存在,請說明理由;
          (3)拋物線l2與y軸交于點(diǎn)D,點(diǎn)P是線段BD上的一個動點(diǎn),過點(diǎn)P,作y軸的平行線,交拋物線l2于點(diǎn)E,求線段PE長度的最大值.
          分析:(1)由于二次函數(shù)的二次項系數(shù)表示的是拋物線的開口大小和開口方向,在平移過程中,拋物線的形狀沒有發(fā)生變化,所以二次項系數(shù)仍為1,已知了平移后的拋物線經(jīng)過x軸上的A、B兩點(diǎn),即可由交點(diǎn)式表示出平移后的拋物線解析式;
          (2)假設(shè)存在這樣的K點(diǎn),過C作CG⊥y軸于G,若∠BGC=90°,可證得△OKB∽△GCK,通過相似三角形得到的比例線段即可求出OK的長,也就能得到K點(diǎn)的坐標(biāo);
          (3)易求得直線BD的解析式,可設(shè)出P點(diǎn)的橫坐標(biāo),根據(jù)直線BD和拋物線l2的解析式,可表示出P、E的縱坐標(biāo),進(jìn)而可表示出PE的長,由此可得到關(guān)于PE的長和P點(diǎn)橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)及自變量的取值范圍即可求得PE的最大值.
          解答:解:(1)∵拋物線l2經(jīng)過A(-1,0),B(3,0)
          ∴設(shè)拋物線l2的解析式為:y=a(x+1)(x-3)…(1分)
          ∵拋物線l2是由y=x2平移得到,
          ∴a=1
          ∴拋物線l2的函數(shù)表達(dá)式:y=x2-2x-3…(2分)

          (2)存在點(diǎn)K…(3分)
          ∵拋物線l2的函數(shù)表達(dá)式:y=x2-2x-3,
          ∴y=(x-1)2-4,
          ∴拋物線l2的頂點(diǎn)坐標(biāo)為(1,-4)
          過點(diǎn)C作CG垂直于y軸,垂足為G
          精英家教網(wǎng)
          若∠OKB+∠GKC=90°
          則∠BKC=90°,∠OBK=∠GKC
          ∴△OKB∽△GCK,
          OB
          OK
          =
          GK
          GC
          ,
          3
          OK
          =
          4-OK
          1

          解之得:OK=1,或OK=3
          ∴點(diǎn)K坐標(biāo)為(0,-1)或(0,-3)…(4分)

          (3)拋物線l2與y軸交于點(diǎn)D,拋物線l2的函數(shù)表達(dá)式:y=x2-2x-3
          ∴點(diǎn)D坐標(biāo)為(0,-3),
          ∴設(shè)直線BD的解析式為:y=kx+b
          將B(3,0),D(0,-3)代入y=kx+b
          得:
          3k+b=0
          b=-3

          ∴解之得:
          k=1
          b=-3
          ;
          ∴解析式為:y=x-3…(5分)
          ∵點(diǎn)P是線段BD上的一個動點(diǎn),
          ∴點(diǎn)P坐標(biāo)為(x,x-3)
          ∵PE平行于y軸,且點(diǎn)E在拋物線l2上,
          ∴點(diǎn)E坐標(biāo)為(x,x2-2x-3)
          線段PE的長度為|x2-2x-3|-|x-3|
          則PE=-x2+3x=-(x-
          3
          2
          )2+
          9
          4

          ∴線段PE長度的最大值
          9
          4
          …(6分)
          點(diǎn)評:此題考查了二次函數(shù)圖象的平移、相似三角形的判定和性質(zhì)以及二次函數(shù)的應(yīng)用等知識,能夠?qū)⒕段PE的長轉(zhuǎn)換為二次函數(shù)求最值的問題是解答(3)題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
          (1)求點(diǎn)B的坐標(biāo);
          (2)當(dāng)∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
          (3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊答案