日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(0,1),C(2,
          95
          ).
          (Ⅰ)直線l:y=kx+b過A、B兩點(diǎn),求k、b的值;
          (Ⅱ)求過A、B、C三點(diǎn)的拋物線Q的解析式;
          (Ⅲ)設(shè)(Ⅱ)中的拋物線Q的對稱軸與x軸相交于點(diǎn)E,那么在對稱軸上是否存在點(diǎn)F,使⊙F與直線l和x軸同時(shí)相切?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
          分析:(1)直線l:y=kx+b過A、B兩點(diǎn),把這兩點(diǎn)的坐標(biāo)代入函數(shù)解析式,就可以得到關(guān)于k,b的方程組,就可以求出k,b的值.
          (2)A、B、C三點(diǎn)的坐標(biāo)已知,根據(jù)待定系數(shù)法就可以求出函數(shù)的解析式.
          (3)對稱軸上是否存在點(diǎn)F,使⊙F與直線l和x軸同時(shí)相切,應(yīng)分F在x軸的上方和下方兩種情況進(jìn)行討論.當(dāng)F在x軸的上方時(shí),設(shè)直線l與x軸的交點(diǎn)是P,則PF是三角形MPE的角平分線,根據(jù)三角形角平分線的性質(zhì)就可以求出F的坐標(biāo).
          當(dāng)F在x軸的下方時(shí),△MNF為等腰直角三角形.根據(jù)等腰直角三角形的性質(zhì)就可以求出F點(diǎn)的坐標(biāo).
          解答:精英家教網(wǎng)解:(Ⅰ)∵直線y=kx+b過A、B兩點(diǎn),
          -k+b=0
          b=1
          (1分)
          解這個(gè)方程組,
          得k=1,b=1.(2分)

          (Ⅱ)設(shè)拋物線的解析式為y=ax2+bx+c,
          則有:
          a-b+c=0
          c=1
          4a+2b+c=
          9
          5
          (3分)
          解這個(gè)方程組,
          a=-
          1
          5
          b=
          4
          5
          c=1

          ∴拋物線的解析式為y=-
          1
          5
          x2+
          4
          5
          x+1.(4分)

          (Ⅲ)存在⊙F與直線l和x軸同時(shí)相切.
          易知拋物線Q的對稱軸為x=2,(5分)
          ①當(dāng)圓心F在x軸的上方時(shí),
          設(shè)點(diǎn)F的坐標(biāo)為(2,y0),把x=2代入y=x+1,
          得y=3.
          ∴拋物線Q的對稱軸與直線l的交點(diǎn)為M(2,3).(6分)
          ∴EF=y0,ME=3,MF=ME-EF=3-y0.(7分)
          由直線l:y=x+1知,
          ∠NMF=45度.
          ∴△MNF是等腰直角三角形
          ∴MF=
          2
          NF=
          2
          EF
          ∴3-y0=
          2
          y0
          ∴y0=3
          2
          -3
          ∴點(diǎn)F的坐標(biāo)為(2,3
          2
          -3).(8分)
          ②當(dāng)圓心F在x軸的下方時(shí),設(shè)點(diǎn)F的坐標(biāo)為(2,y0),則MF=3-y0,F(xiàn)E=-y0
          由△MNF為等腰直角三角形,得3-y0=
          2
          y0,(9分)
          ∴y0=-3-3
          2

          ∴點(diǎn)F的坐標(biāo)為(2,-3-3
          2
          ).(10分)
          點(diǎn)評:本題主要考查了待定系數(shù)法求函數(shù)的解析式.利用數(shù)形結(jié)合的方法解決本題,理解圖形中圓與直線的關(guān)系是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
          4
          個(gè).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點(diǎn).
          (1)求此拋物線的解析式;
          (2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
          (3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請你直接寫出點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn).
          (1)求此拋物線的函數(shù)表達(dá)式;
          (2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長;
          (3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
          2
          ?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
          5
          5
          個(gè).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
          (1,-1),(5,3)或(5,-1)
          (1,-1),(5,3)或(5,-1)

          查看答案和解析>>

          同步練習(xí)冊答案