日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
          (1)求此拋物線的解析式;
          (2)設此拋物線與x軸交于A、B兩點(點A在點B的左側),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標;
          (3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.
          分析:(1)根據(jù)待定系數(shù)法列出方程組,求出a、b、c的值即可;
          (2)根據(jù)拋物線解析式求出與x軸、y軸的交點,根據(jù)相似三角形的性質列出比例式,結合勾股定理解答即可;
          (3)畫出圖形,根據(jù)平行四邊形的性質即可得到M點的坐標.
          解答:精英家教網(wǎng)解:(1)由題意,得
          -
          b
          2a
          =1
          4a-2b+c=-5
          25a+5b+c=-12.
          ,
          解這個方程組,得
          a=-1
          b=2
          c=3.
          ,(1分)
          ∴拋物線的解析式為y=-x2+2x+3.(2分)

          (2)令y=0,得-x2+2x+3=0.
          解這個方程,得x1=-1,x2=3.
          ∴A(-1,0),B(3,0).
          令x=0,得y=3.
          ∴C(0,3).
          ∴AB=4,OB=OC=3,∠OBC=45°.
          BC=
          OB2+OC2
          =
          32+32
          =3
          2

          過點D作DE⊥x軸于點E.
          ∵∠OBC=45°,
          ∴BE=DE.
          要使△BOD∽△BAC或△BDO∽△BAC,
          已有∠ABC=∠OBD,則只需
          BD
          BC
          =
          BO
          BA
          BO
          BC
          =
          BD
          BA
          成立.
          BD
          BC
          =
          BO
          BA
          成立,
          則有BD=
          BO×BC
          BA
          =
          3×3
          2
          4
          =
          9
          2
          4

          在Rt△BDE中,由勾股定理,得BE2+DE2=2BE2=BD2=(
          9
          2
          4
          )2

          BE=DE=
          9
          4

          OE=OB-BE=3-
          9
          4
          =
          3
          4

          ∴點D的坐標為(
          3
          4
          ,
          9
          4
          )
          .(4分)
          BO
          BC
          =
          BD
          BA
          成立,則有BD=
          BO×BA
          BC
          =
          3×4
          3
          2
          =2
          2

          在Rt△BDE中,由勾股定理,得BE2+DE2=2BE2=BD2=(2
          2
          )2

          ∴BE=DE=2.
          ∴OE=OB-BE=3-2=1.
          ∴點D的坐標為(1,2).(5分)
          ∴點D的坐標為(
          3
          4
          ,
          9
          4
          )
          或(1,2);

          (3)點M的坐標為(2,3)或(4,-5)或(-4,-21).(8分)
          點評:本題主要考查了待定系數(shù)法求二次函數(shù)解析式、函數(shù)圖象與x軸、y軸交點的求法等知識點.主要考查學生數(shù)形結合的數(shù)學思想方法,畫出相關圖形,是解題必不可少的環(huán)節(jié).
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          13、在平面直角坐標系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
          4
          個.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
          (1)求此拋物線的函數(shù)表達式;
          (2)設E是y軸右側拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
          (3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
          2
          ?若存在,求出點M的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          在平面直角坐標系xOy中,已知A(2,-2),B(0,-2),在坐標平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
          5
          5
          個.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標為
          (1,-1),(5,3)或(5,-1)
          (1,-1),(5,3)或(5,-1)

          查看答案和解析>>

          同步練習冊答案