日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.過點D作DE⊥AB,過點C作CF⊥BD,垂足分別為E、F,連接EF,求證:△DEF為等邊三角形.
          分析:根據(jù)梯形的兩腰平行和等腰梯形的性質證得CB=BD,然后證明∠BDE=60°,利用有一個角為60°的等腰三角形為等邊三角形來證明等邊三角形.
          解答:證明:∵DC∥AB,AD=BC,∠A=60°,
          ∴∠A=∠ABC=60°,
          ∵BD平分∠ABC,
          ∴∠ABD=∠CBD=
          1
          2
          ∠ABC=30°,
          ∵DC∥AB,
          ∴∠BDC=∠ABD=30°,
          ∴∠CDB=∠DBE
          ∴∠CBD=∠CDB,
          ∴CB=CD,
          ∵CF⊥BD,
          ∴F為BD的中點,
          ∵DE⊥AB,
          ∴DF=BF=EF,
          由∠ABD=30°,得∠BDE=60°,
          ∴△DEF為等邊三角形.
          點評:本題考查了等腰梯形的性質及等邊三角形的判定方法,等邊三角形最常用的判定方法是有一個角是60°的等腰三角形是等邊三角形.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
          =
          S△BOC.(填“>”、“=”或“<”)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
          求:梯形ABCD的周長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
          (1)求證:△ABD∽△DCB;
          (2)若BD=7,AD=5,求BC的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
          38.4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
          A、3cmB、7cmC、3cm或7cmD、2cm

          查看答案和解析>>

          同步練習冊答案