日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】矩形ABCD中,E在AD上,F(xiàn)在AB上,EFCE于E,DE=AF=2,矩形的周長為24,則BF的長為( 。

          A. 3 B. 4 C. 5 D. 7

          【答案】A

          【解析】

          先根據(jù)直角三角形的性質(zhì)證明得到∠AEF=DCE,然后利用角角邊證明AEFDCE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=DC,再利用矩形的周長求出CD的長度,根據(jù)BF=AB-AF,代入數(shù)據(jù)計(jì)算即可得解.

          EFCE,

          ∴∠AEF+DEC=90°,

          在矩形ABCD中,∠D=90°,

          ∴∠DCE+DEC=90°,

          ∴∠AEF=DCE,

          AEFDCE中,

          ,

          ∴△AEF≌△DCE(AAS),

          AE=DC,

          ∵矩形的周長為24,

          2(AE+DE+DC)=24,

          2(DC+2+DC)=24,

          解得DC=5,

          BF=ABAF=52=3.

          故選A.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABO的直徑,AC是弦,∠BAC的平分線交O于點(diǎn)D,過點(diǎn)DDEACAC的延長線于點(diǎn)E

          (1)求證:DEO的切線;

          (2)若AB=10,AC=6,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABO的直徑,直線BMAB于點(diǎn)B,點(diǎn)CO上,分別連接BC,AC,且AC的延長線交BM于點(diǎn)DCFO的切線交BM于點(diǎn)F

          (1)求證:CFDF;

          (2)連接OF,若AB=10,BC=6,求線段OF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形中,點(diǎn)延長線上一點(diǎn)且,連接,在上截取,使,過點(diǎn)平分,分別交于點(diǎn)、.連接.

          (1)若,求的長;

          (2)求證:.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】給定關(guān)于的二次函數(shù) ,

          學(xué)生甲:當(dāng)時(shí),拋物線與 軸只有一個(gè)交點(diǎn),因此當(dāng)拋物線與軸只有一個(gè)交點(diǎn)時(shí),的值為3;

          學(xué)生乙:如果拋物線在軸上方,那么該拋物線的最低點(diǎn)一定在第二象限;

          請(qǐng)判斷學(xué)生甲、乙的觀點(diǎn)是否正確,并說明你的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:一組數(shù)據(jù),,,的平均數(shù)是22,方差是13,那么另一組數(shù)據(jù),,,的方差是__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價(jià)不低于成本價(jià),而每件的利潤不高于成本價(jià)的60%

          1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.

          2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?每月的最大利潤是多少?

          3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】類比等腰三角形的定義,我們定義:有三條邊相等的凸四邊形叫做“準(zhǔn)等邊四邊形”.

          1)已知:如圖1,在“準(zhǔn)等邊四邊形”ABCD中,BCABBDCD,AB=3,BD=4,求BC的長;

          2)在探究性質(zhì)時(shí),小明發(fā)現(xiàn)一個(gè)結(jié)論:對(duì)角線互相垂直的“準(zhǔn)等邊四邊形”是菱形.請(qǐng)你判斷此結(jié)論是否正確,若正確,請(qǐng)說明理由;若不正確,請(qǐng)舉出反例;

          3)如圖2,在ABC中,AB=AC=,BAC=90°.在AB的垂直平分線上是否存在點(diǎn)P,使得以A,BC,P為頂點(diǎn)的四邊形為“準(zhǔn)等邊四邊形”. 若存在,請(qǐng)求出該“準(zhǔn)等邊四邊形”的面積;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1,圖2是兩張形狀、大小完全相同的6×6方格紙,方格紙中的每個(gè)小長方形的邊長為1,所求的圖形各頂點(diǎn)也在格點(diǎn)上.

          1)在圖1中畫一個(gè)以點(diǎn)為頂點(diǎn)的菱形(不是正方形),并求菱形周長;

          2)在圖2中畫一個(gè)以點(diǎn)為所畫的平行四邊形對(duì)角線交點(diǎn),且面積為6,求此平行四邊形周長.

          查看答案和解析>>

          同步練習(xí)冊答案