日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,△ABC是邊長3cm的等邊三角形.動點(diǎn)P以1cm/s的速度從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動.
          (1)如圖1,設(shè)點(diǎn)P的運(yùn)動時間為t(s),那么t=
           
          (s)時,△PBC是直角三角形;
          (2)如圖2,若另一動點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向點(diǎn)C運(yùn)動,如果動點(diǎn)P、Q都以1cm/s的速度同時出發(fā).設(shè)運(yùn)動時間為t(s),那么t為何值時,△PBQ是直角三角形?
          (3)如圖3,若另一動點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動.連接PQ交AC于D.如果動點(diǎn)P、Q都以1cm/s的速度同時出發(fā).設(shè)運(yùn)動時間為t(s),那么t為何值時,△DCQ是等腰三角形?
          (4)如圖4,若另一動點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動.連接PQ交AC于D,連接PC.如果動點(diǎn)P、Q都以1cm/s的速度同時出發(fā).請你猜想:在點(diǎn)P、Q的運(yùn)動過程中,△PCD和△QCD的面積有什么關(guān)系?并說明理由.
          精英家教網(wǎng)
          分析:(1)當(dāng)△PBC是直角三角形時,∠B=60°,所以BP=1.5cm,即可算出t的值;
          (2)因為∠B=60°,可選取∠BPQ=90°或∠BQP=90°,然后根據(jù)勾股定理計算出BP長,即可算出t的大;
          (3)因為∠DCQ=120°,當(dāng)△DCQ是等腰三角形時,CD=CQ,然后可證明△APD是直角三角形,即可根據(jù)題意求出t的值;
          (4)面積相等.可通過同底等高驗證.
          解答:解:(1)當(dāng)△PBC是直角三角形時,∠B=60°,
          ∠BPC=90°,所以BP=1.5cm,
          所以t=
          3
          2
          (2分)

          (2)當(dāng)∠BPQ=90°時,BP=0.5BQ,
          3-t=0.5t,所以t=2;
          當(dāng)∠BQP=90°時,BP=2BQ,
          3-t=2t,所以t=1;
          所以t=1或2(s)(4分)

          (3)因為∠DCQ=120°,當(dāng)△DCQ是等腰三角形時,CD=CQ,
          所以∠PDA=∠CDQ=∠CQD=30°,
          又因為∠A=60°,
          所以AD=2AP,2t+t=3,
          解得t=1(s);(2分)

          (4)相等,如圖所示:
          精英家教網(wǎng)
          作PE垂直AD,QG垂直AD延長線,則PE∥QG,
          所以,∠G=∠AEP,
          因為
          ∠G=∠AEP
          ∠APE=∠CQG
          AP=CQ
          ,
          所以△EAP≌△GCQ(AAS),
          所以PE=QG,所以,△PCD和△QCD同底等高,所以面積相等.
          點(diǎn)評:本題主要考查對于勾股定理的應(yīng)用和等腰三角形的判定,還要注意三角形面積的求法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:△ABC是邊長為1的等邊三角形,D是射線BC上一動點(diǎn)(與點(diǎn)B、C不重合),以AD為一邊向右側(cè)作等邊△ADE,連接CE.
          (1)當(dāng)點(diǎn)D在線段BC上運(yùn)動時(如圖1),求證:①EC=DB;②EC∥AB;
          (2)當(dāng)點(diǎn)D在線段BC的延長線上運(yùn)動時(如圖2),②中的結(jié)精英家教網(wǎng)論是否仍然成立?請說明理由;
          (3)當(dāng)EC=2時,求△ABC與△ADE的面積比.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:△ABC是邊長為4的等邊三角形,點(diǎn)O在邊AB上,⊙O過點(diǎn)B且分別與邊AB,BC相交于點(diǎn)D,E,EF⊥AC,垂足為F.
          (1)求證:直線EF是⊙O的切線;
          (2)當(dāng)直線DF與⊙O相切時,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•德化縣模擬)如圖,已知:△ABC是邊長為2
          3
          的等邊三角形,四邊形DEFG是邊長為3的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒
          1
          2
          個單位長度的速度沿EF方向向右勻速運(yùn)動,當(dāng)點(diǎn)C與點(diǎn)F重合時暫停運(yùn)動,設(shè)△ABC的運(yùn)動時間為t秒(t≥0).
          (1)在運(yùn)動過程中,設(shè)AC交DE于點(diǎn)P,PE=
          3
          2
          3
          2
          t;
          (2)在整個運(yùn)動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,
          ①當(dāng)t為何值時,S等于△ABC面積的三分之一;
          ②當(dāng)點(diǎn)A在DG上運(yùn)動時,請求出S與t之間的函數(shù)關(guān)系式,并指出t的取值范圍;
          (3)如圖2,若四邊形DEFG是邊長為2
          3
          的正方形,△ABC的移動速度為每秒
          3
          2
          個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點(diǎn)從F點(diǎn)開始,沿折線F-G-D以每秒
          3
          個單位長度開始移動,△ABC停止運(yùn)動時,Q點(diǎn)也停止運(yùn)動.設(shè)在運(yùn)動過程中,DE交折線B-A-C于P點(diǎn),則是否存在t的值,使得PC與EQ互相垂直?若存在,請求出t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013屆度安徽省望江縣七年級第二學(xué)期期末質(zhì)量檢測數(shù)學(xué) 題型:解答題

          (9分)已知:△ABC是邊長為4的等邊三角形,點(diǎn)O在邊AB上,⊙O過點(diǎn)B且

          分別與邊AB,BC相交于點(diǎn)D,E,EF⊥AC,垂足為F.

          (1)求證:直線EF是⊙O的切線;

          (2)當(dāng)直線DF與⊙O相切時,求⊙O的半徑.

           

          查看答案和解析>>

          同步練習(xí)冊答案