日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 有一塊三角形紙板(如圖)AC=60cm,BC=80cm,AB=100cm,小華想用它剪一個(gè)正方形,使正方形的每個(gè)頂點(diǎn)都在三角形的邊上,請(qǐng)你幫她計(jì)算剪下的正方形的邊長.

          解:∵△ABC中,AC=60cm,BC=80cm,AB=100cm,
          ∴AC2+BC2=AB2
          ∴∠C=90°
          ∴CN==48
          ∵四邊形DEFG是正方形,
          ∴GD∥BA,DG=EF,
          ∴△CDG∽△CAB,
          又∵CN⊥BA,
          ∴AN⊥DG,DG=ED=EF,
          =,
          設(shè)DE=x,則CM=48-x,
          =,
          解得:x=
          答:這個(gè)正方形的邊長為厘米.
          分析:首先利用三角形的性質(zhì)和勾股定理求得AB邊上的高CN,然后利用相似三角形的性質(zhì)求得線段MN即為正方形的邊長.
          點(diǎn)評(píng):本題考查相似三角形性質(zhì)的應(yīng)用.解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來解決問題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          某課題研究小組就圖形面積問題進(jìn)行專題研究,他們發(fā)現(xiàn)如下結(jié)論:
          (1)有一條邊對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于這條邊上的對(duì)應(yīng)高之比;
          (2)有一個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于夾這個(gè)角的兩邊乘積之比;

          現(xiàn)請(qǐng)你繼續(xù)對(duì)下面問題進(jìn)行探究,探究過程可直接應(yīng)用上述結(jié)論.(S表示面積)
          精英家教網(wǎng)
          問題1:如圖1,現(xiàn)有一塊三角形紙板ABC,P1,P2三等分邊AB,R1,R2三等分邊AC.經(jīng)探究知S四邊形P1P2R2R1=
          13
          S△ABC,請(qǐng)證明.
          問題2:若有另一塊三角形紙板,可將其與問題1中的拼合成四邊形ABCD,如圖2,Q1,Q2三等分邊DC.請(qǐng)?zhí)骄?span id="r6cgzdi" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">S四邊形P1Q1Q2P2與S四邊形ABCD之間的數(shù)量關(guān)系.
          問題3:如圖3,P1,P2,P3,P4五等分邊AB,Q1,Q2,Q3,Q4五等分邊DC.若S四邊形ABCD=1,求S四邊形P2Q2Q3P3
          問題4:如圖4,P1,P2,P3四等分邊AB,Q1,Q2,Q3四等分邊DC,P1Q1,P2Q2,P3Q3將四邊形ABCD分成四個(gè)部分,面積分別為S1,S2,S3,S4.請(qǐng)直接寫出含有S1,S2,S3,S4的一個(gè)等式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:江蘇中考真題 題型:解答題

          某課題研究小組就圖形面積問題進(jìn)行專題研究,他們發(fā)現(xiàn)如下結(jié)論:
          (1)有一條邊對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于這條邊上的對(duì)應(yīng)高之比;
          (2)有一個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于夾這個(gè)角的兩邊乘積之比;

          現(xiàn)請(qǐng)你繼續(xù)對(duì)下面問題進(jìn)行探究,探究過程可直接應(yīng)用上述結(jié)論。(S表示面積)
          問題1:如圖1,現(xiàn)有一塊三角形紙板ABC,P1,P2三等分邊AB,R1,R2三等分邊AC,經(jīng)探究知=S△ABC,請(qǐng)證明;
          問題2:若有另一塊三角形紙板,可將其與問題1中的拼合成四邊形ABCD,如圖2,Q1,Q2三等分邊DC,請(qǐng)?zhí)骄?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/c02/20111102/201111021056483901304.gif">與S四邊形ABCD之間的數(shù)量關(guān)系;
          問題3:如圖3,P1,P2,P3,P4五等分邊AB,Q1,Q2,Q3,Q4五等分邊DC,若S四邊形ABCD=1,求,;
          問題4:如圖4,P1,P2,P3四等分邊AB,Q1,Q2,Q3四等分邊DC,P1Q1,P2Q2,P3Q3將四邊形ABCD 分成四個(gè)部分,面積分別為S1,S2,S3,S4,請(qǐng)直接寫出含有S1,S2,S3,S4的一個(gè)等式。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          某課題研究小組就圖形面積問題進(jìn)行專題研究,他們發(fā)現(xiàn)如下結(jié)論:

          (1)有一條邊對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于這條邊上的對(duì)應(yīng)高之比;

          (2)有一個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于夾這個(gè)角的兩邊乘積之比;

          現(xiàn)請(qǐng)你繼續(xù)對(duì)下面問題進(jìn)行探究,探究過程可直接應(yīng)用上述結(jié)論.(S表示面積)

          問題1:如圖1,現(xiàn)有一塊三角形紙板ABC,P1P2三等分邊AB,R1R2三等分邊AC

          經(jīng)探究知SABC,請(qǐng)證明.

           

            問題2:若有另一塊三角形紙板,可將其與問題1中的拼合成四邊形ABCD,如圖2,Q1,Q2三等分邊DC.請(qǐng)?zhí)骄?img width="96" height="33" src="http://thumb.zyjl.cn/pic1/2012/05/24/00/2012052400492859269946.files/image063.gif" complete="true" />與S四邊形ABCD之間的數(shù)量關(guān)系.

            問題3:如圖3,P1,P2,P3,P4五等分邊ABQ1,Q2Q3,Q4五等分邊DC.若

          S四邊形ABCD=1,求

          問題4:如圖4,P1P2,P3四等分邊ABQ1,Q2Q3四等分邊DCP1Q1,P2Q2,P3Q3

          將四邊形ABCD分成四個(gè)部分,面積分別為S1,S2,S3S4.請(qǐng)直接寫出含有S1,S2,S3,S4的一個(gè)等式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年陜西省渭南市富平縣九年級(jí)摸底考試數(shù)學(xué)試卷(解析版) 題型:解答題

          某課題研究小組就圖形面積問題進(jìn)行專題研究,他們發(fā)現(xiàn)如下結(jié)論:
          (1)有一條邊對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于這條邊上的對(duì)應(yīng)高之比;
          (2)有一個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于夾這個(gè)角的兩邊乘積之比;

          現(xiàn)請(qǐng)你繼續(xù)對(duì)下面問題進(jìn)行探究,探究過程可直接應(yīng)用上述結(jié)論.(S表示面積)

          問題1:如圖1,現(xiàn)有一塊三角形紙板ABC,P1,P2三等分邊AB,R1,R2三等分邊AC.經(jīng)探究知=S△ABC,請(qǐng)證明.
          問題2:若有另一塊三角形紙板,可將其與問題1中的拼合成四邊形ABCD,如圖2,Q1,Q2三等分邊DC.請(qǐng)?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131101191115817054256/SYS201311011911158170542024_ST/2.png">與S四邊形ABCD之間的數(shù)量關(guān)系.
          問題3:如圖3,P1,P2,P3,P4五等分邊AB,Q1,Q2,Q3,Q4五等分邊DC.若S四邊形ABCD=1,求
          問題4:如圖4,P1,P2,P3四等分邊AB,Q1,Q2,Q3四等分邊DC,P1Q1,P2Q2,P3Q3將四邊形ABCD分成四個(gè)部分,面積分別為S1,S2,S3,S4.請(qǐng)直接寫出含有S1,S2,S3,S4的一個(gè)等式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案