日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知關于x的一元二次方程x2+2x+=0有實數(shù)根,k為正整數(shù).
          (1)求k的值;
          (2)當此方程有兩個非零的整數(shù)根時,將關于x的二次函數(shù)y=x2+2x+的圖象向下平移9個單位,求平移后的圖象的表達式;
          (3)在(2)的條件下,平移后的二次函數(shù)的圖象與x軸交于點A,B(點A在點B左側),直線y=kx+b(k>0)過點B,且與拋物線的另一個交點為C,直線BC上方的拋物線與線段BC組成新的圖象,當此新圖象的最小值大于﹣5時,求k的取值范圍.

          【答案】解:(1)∵關于x的一元二次方程x2+2x+=0有實數(shù)根,
          ∴△=b2﹣4ac=4﹣4×≥0,
          ∴k﹣1≤2,
          ∴k≤3,
          ∵k為正整數(shù),
          ∴k的值是1,2,3;
          (2)∵方程有兩個非零的整數(shù)根,
          當k=1時,x2+2x=0,不合題意,舍去,
          當k=2時,x2+2x+=0,
          方程的根不是整數(shù),不合題意,舍去,
          當k=3時,x2+2x+1=0,
          解得:x1=x2=﹣1,符合題意,
          ∴k=3,
          ∴y=x2+2x+1,
          ∴平移后的圖象的表達式y(tǒng)=x2+2x+1﹣9=x2+2x﹣8;
          (3)令y=0,x2+2x﹣8=0,
          ∴x1=﹣4,x2=2,
          ∵與x軸交于點A,B(點A在點B左側),
          ∴A(﹣4,0),B(2,0),
          ∵直線l:y=kx+b(k>0)經(jīng)過點B,
          ∴函數(shù)新圖象如圖所示,當點C在拋物線對稱軸左側時,新函數(shù)的最小值有可能大于﹣5,
          令y=﹣5,即x2+2x﹣8=﹣5,
          解得:x1=﹣3,x2=1,(不合題意,舍去),
          ∴拋物線經(jīng)過點(﹣3,﹣5),
          當直線y=kx+b(k>0)經(jīng)過點(﹣3,﹣5),(2,0)時,
          可求得k=1,
          由圖象可知,當0<k<1時新函數(shù)的最小值大于﹣5.

          【解析】(1)根據(jù)方程有實數(shù)根可得△≥0,求出k的取值范圍,然后根據(jù)k為正整數(shù)得出k的值;
          (2)根據(jù)方程有兩個非零的整數(shù)根進行判斷,得出k=3,然后得出函數(shù)解析式,最后根據(jù)平移的性質求出平移后的圖象的表達式;
          (3)令y=0,得出A、B的坐標,作出圖象,然后根據(jù)新函數(shù)的最小值大于﹣5,求出C的坐標,然后根據(jù)B、C的坐標求出此時k的值,即可得出k的取值范圍.
          【考點精析】掌握二次函數(shù)的概念是解答本題的根本,需要知道一般地,自變量x和因變量y之間存在如下關系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù).

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】閱讀下面材料:
          在學習《圓》這一章時,老師給同學們布置了一道尺規(guī)作圖題:
          尺規(guī)作圖:過圓外一點作圓的切線.
          已知:P為⊙O外一點.
          求作:經(jīng)過點P的⊙O的切線.
          小敏的作法如下:
          如圖,
          (1)連接OP,作線段OP的垂直平分線MN交OP于點C;
          (2)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點;
          (3)作直線PA,PB.所以直線PA,PB就是所求作的切線.
          老師認為小敏的作法正確.
          請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是 ;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(1)如圖1,△ABC中,∠C=90°,AB的垂直平分線交AC于點D,連接BD.若AC=2,BC=1,求△BCD的周長為;
          (2)O為正方形ABCD的中心,E為CD邊上一點,F(xiàn)為AD邊上一點,且△EDF的周長等于AD的長.
          ①在圖2中求作△EDF(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡);
          ②在圖3中補全圖形,求∠EOF的度數(shù);
          ③若 , 求的值

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別是邊AD,AB的中點,EF交AC于點H,則的值為

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算

          (1)﹣22×7﹣(﹣3)×6+5;

          (2)化簡3(m﹣2n+2)﹣(﹣2m﹣3n)﹣1;

          (3)解方程:2(2x+1)﹣(10x+1)=6;

          (4)=2.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).

          (1)把△ABC向上平移2個單位長度,再向右平移1個單位長度后得到△A1B1C1,請畫出△A1B1C1,并寫出點A1,B1,C1的坐標;

          (2)求△A1B1C1的面積;

          (3)點P在坐標軸上,且△A1B1P的面積是2,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示的圖形經(jīng)折疊后形成如圖所示的棱柱.

          這個棱柱有幾個側面?側面?zhèn)數(shù)與底面邊數(shù)有什么關系?

          中哪些圖形的形狀與大小一定完全相同?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD是正方形,直線,,分別通過A,B,C三點,且,若的距離為5,的距離為7,則正方形ABCD的面積等于( )

          A. 148 B. 70 C. 144 D. 74

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,已知直線y=﹣2x+4與兩坐標軸分別交于點A、B,點C為線段OA上一動點,連接BC,作BC的中垂線分別交OB、AB交于點D、E

          l當點C與點O重合時,DE= ;

          2當CEOB時,證明此時四邊形BDCE為菱形;

          3在點C的運動過程中,直接寫出OD的取值范圍

          查看答案和解析>>

          同步練習冊答案