日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知⊙O為△ABC的外接圓,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,P為BC的中點.動點Q從點P出發(fā),沿射線PC方向以2cm/s的速度運動,以P為圓心,PQ長為半徑作圓.設點Q運動的時間為t s.
          (1)試說明圓心O的位置.
          (2)當t=1.2時,判斷直線AB與⊙P的位置關系,并說明理由;
          (3)若⊙P與⊙O相切,求t的值.

          【答案】分析:(1)根據(jù)直角三角形的性質(zhì)以及圓周角定理得出圓心O的位置為線段AB的中點;
          (2)首先根據(jù)勾股定理得出AB的長,再利用△PBD∽△ABC,得出,求出PD的長;即圓心P到直線AB的距離等于⊙P的半徑,得出答案即可;
          (3)根據(jù)點P在⊙O內(nèi)部,得出⊙P與⊙O只能內(nèi)切,進而利用半徑與圓心距之間的關系求出即可.
          解答:解:(1)如圖1,∵Rt△ABC中,∠ACB=90°,AB是△ABC外接圓直徑,
          ∴圓心O的位置為線段AB的中點.

          (2)直線AB與⊙P相切.
          如圖2,過點P作PD⊥AB,垂足為D.
          在Rt△ABC中,∠ACB=90°
          ∵AC=6cm,BC=8cm 
          ∴AB==10(cm),
          ∵P為BC的中點
          ∴PB=4cm.
          ∵∠PDB=∠ACB=90°,∠PBD=∠ABC
          ∴△PBD∽△ABC.
          ,即
          ∴PD=2.4(cm).
          當t=1.2時,PQ=2t=2.4(cm)
          ∴PD=PQ,即圓心P到直線AB的距離等于⊙P的半徑.
          ∴直線AB與⊙P相切.

          (3)∵∠ACB=90°,
          ∴AB為△ABC的外切圓的直徑.
          ∴OB=AB=5(cm).
          如圖3,連接OP,
          ∵P為BC的中點,O為BA的中點,
          ∴OP=AC=3(cm).
          ∵點P在⊙O內(nèi)部,
          ∴⊙P與⊙O只能內(nèi)切.
          ∴5-2t=3或2t-5=3,
          ∴t=1或4.
          ∴⊙P與⊙O相切時,t的值為1或4.
          點評:此題主要考查了相切兩圓的性質(zhì)以及切線的判定和圓周角定理等知識,利用圖形分類討論得出是解題關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知CD為⊙O的直徑,過點D的弦DE平行于半徑OA,若∠D的度數(shù)是50°,則∠C的度數(shù)是
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知AB為⊙O的弦,以OB為直徑作⊙O1交AB于D,⊙O的弦AE切⊙O1于點C.
          求證:(1)BC2=BE•BD;(2)AC•CE=BE•BD.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知AB為⊙O的直徑,直線BC與⊙O相切于點B,過A作AD∥OC交⊙O于點D,連接CD.
          (1)求證:CD是⊙O的切線;
          (2)若AD=2,直徑AB=6,求線段BC的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC為等邊三角形,D,E,F(xiàn)分別在邊BC,CA,AB上,且△DEF也是等邊三角形,除已知相等的邊以外,請你猜想還有哪些相等線段,并證明你的猜想是正確的.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
          (1)求證:OF∥BC;
          (2)求證:△AFO≌△CEB;
          (3)若EB=5cm,CD=10
          3
          cm,設OE=x,求x值及陰影部分的面積.

          查看答案和解析>>

          同步練習冊答案