日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知AB為⊙O的弦,以O(shè)B為直徑作⊙O1交AB于D,⊙O的弦AE切⊙O1于點(diǎn)C.
          求證:(1)BC2=BE•BD;(2)AC•CE=BE•BD.
          分析:(1)過點(diǎn)B作⊙O1的切線MN,連接CD,利用弦切角定理可得∠E=∠MBA,∠BCD=∠MBA,等量代換∠E=∠BCD,又AE是切線,再利用弦切角定理可得∠BDC=∠BCE,從而易證△BCE∽△BDC,那么可得比例線段,即可證;
          (2)延長BC與⊙O相交于點(diǎn)F,連接OC,由于OB是小圓的直徑,那么∠BCO=90°,即OC⊥BF,利用垂徑定理,可得BC=CF,再結(jié)合相交弦定理可證.
          解答:精英家教網(wǎng)證明:(1)過點(diǎn)B作⊙O1的切線MN,連接CD,(1分)
          ∵OB是⊙O的半徑,
          ∴MN切⊙O于點(diǎn)B,
          ∵∠E=∠MBA,∠BCD=∠MBA,
          ∴∠E=∠BCD,
          ∵AE切⊙O1于點(diǎn)C,
          ∴∠BDC=∠BCE,
          ∴△BCE∽△BDC,(3分)
          BC
          BD
          =
          BE
          CB
          ,
          ∴BC2=BE•BD;(4分)

          (2)延長BC與⊙O相交于點(diǎn)F,連接OC,(1分)
          ∵OB是⊙O1的直徑,
          ∴OC⊥BC,
          ∴BC=CF,(2分)
          ∵AC•CE=BC•CF,
          ∴AC•CE=BC2,
          ∴AC•CE=BE•BD.(3分)
          點(diǎn)評:關(guān)鍵是作兩圓的公切線;利用了弦切角定理、相似三角形的判定和性質(zhì)、垂徑定理、相交弦定理等知識.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          22、如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點(diǎn),弦PQ交CD于E,則PE•EQ的值是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知AB為半⊙O的直徑,直線MN與⊙O相切于C點(diǎn),AE⊥MN于E,BF⊥MN于F.
          求證:(1)AE+BF=AB;(2)EF2=4AE•BF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知AB為⊙O的直徑,直線l與⊙O相切于點(diǎn)D,AC⊥l于C,AC交⊙O于點(diǎn)E,DF⊥AB于F.
          (1)圖中哪條線段與BF相等?試證明你的結(jié)論;
          (2)若AE=3,CD=2,求⊙O的直徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•包頭)如圖,已知AB為⊙O的直徑,過⊙O上的點(diǎn)C的切線交AB的延長線于點(diǎn)E,AD⊥EC于點(diǎn)D且交⊙O于點(diǎn)F,連接BC,CF,AC.
          (1)求證:BC=CF;
          (2)若AD=6,DE=8,求BE的長;
          (3)求證:AF+2DF=AB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•呼和浩特)如圖,已知AB為⊙O的直徑,PA與⊙O相切于點(diǎn)A,線段OP與弦AC垂直并相交于點(diǎn)D,OP與弧AC相交于點(diǎn)E,連接BC.
          (1)求證:∠PAC=∠B,且PA•BC=AB•CD;
          (2)若PA=10,sinP=
          35
          ,求PE的長.

          查看答案和解析>>

          同步練習(xí)冊答案