日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知在直角梯形ABCD中,AB∥CD,CD=9,∠B=90°,,tan,P、Q分別是邊AB、CD上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)B重合),且有BP=2CQ.
          (1)求AB的長(zhǎng);
          (2)設(shè)CQ=x,四邊形PADQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
          (3)以C為圓心、CQ為半徑作⊙C,以P為圓心、以PA的長(zhǎng)為半徑作⊙P.當(dāng)四邊形PADQ是平行四邊形時(shí),試判斷⊙C與⊙P的位置關(guān)系,并說(shuō)明理由.

          【答案】分析:(1)作DH⊥AB,在Rt△AHD中解出AH,求得AB,
          (2)當(dāng)CQ=x時(shí),則PB=2x,DQ=9-x,AP=12-2x,列出函數(shù)關(guān)系式,
          (3)當(dāng)四邊形PADQ是平行四邊形時(shí),解出兩圓的半徑,然后判斷兩圓位置關(guān)系.
          解答:解:(1)作DH⊥AB,
          在Rt△AHD中,
          tanA=(2分)
          ∴AB=AH+HB=AH+CD=3+9=12(3分)

          (2)依題意,當(dāng)CQ=x時(shí),則PB=2x,∴DQ=9-x,AP=12-2x(4分)
          ∴y=(9-x+12-2x)×
          =x+(0<x<6)(7分)

          (3)當(dāng)四邊形PADQ是平行四邊形時(shí),DQ=AP(8分)
          即9-x=12-2x∴x=3PB=2x=6∴⊙C的半徑CQ=3⊙P的半徑PA=12-2x=6(9分)
          在Rt△PBC中,∠B=90°∴(10分)∴CQ+PA=PC(11分)
          即兩圓半徑之和等于圓心距
          所以⊙C與⊙P外切.(12分)
          點(diǎn)評(píng):本題主要考查圓與圓的位置關(guān)系,還考查了解直角三角形,平行四邊形的性質(zhì)等知識(shí)點(diǎn),綜合性很強(qiáng).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          27、如圖,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,對(duì)角線OC、AB交于點(diǎn)D,點(diǎn)E、F、G分別是CD、BD、BC的中點(diǎn),以O(shè)為原點(diǎn),直線OB為x軸建立平面直角坐標(biāo)系,則G、E、D、F四個(gè)點(diǎn)中與點(diǎn)A在同一反比例函數(shù)圖象上的是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          22、如圖,已知在直角梯形ABCD中,BC∥AD,AB⊥AD,底AD=6,斜腰CD的垂直平分線EF交AD于G,交BA的延長(zhǎng)線于F,且∠D=45°,求BF的長(zhǎng)度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知在直角梯形ABCD中,AB∥CD,CD=9,∠B=90°,BC=3
          5
          ,tanA=
          5
          ,P、Q分別是邊AB、CD上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)B重合),且有BP=2CQ.
          (1)求AB的長(zhǎng);
          (2)設(shè)CQ=x,四邊形PADQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
          (3)以C為圓心、CQ為半徑作⊙C,以P為圓心、以PA的長(zhǎng)為半徑作⊙P.當(dāng)四邊形PADQ是平行四邊形時(shí),試判斷⊙C與⊙P的位置關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知在直角梯形ABCD中,AB∥CD,∠B=∠C=90°,AB=2,BC=7,CD=6,在BC上找一點(diǎn)P,使△ABP∽△DCP,求出BP的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,對(duì)角線OC、AB交于點(diǎn)D,點(diǎn)E、F、G分別是CD、BD、BC的中點(diǎn),以O(shè)為原點(diǎn),直線OB為x軸建立平面直角坐標(biāo)系,則G、E、D、F四個(gè)點(diǎn)中與點(diǎn)A在同一反比例函數(shù)圖象上的是點(diǎn)
          (18,6)
          (18,6)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案