日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖①所示,直線l1:y=3x+3與x軸交于B點(diǎn),與直線l2交于y軸上一點(diǎn)A,且l2與x軸的交點(diǎn)為C(1,0).
          (1)求證:∠ABC=∠ACB;
          (2)如圖②所示,過x軸上一點(diǎn)D(﹣3,0)作DE⊥AC于E,DE交y軸于F點(diǎn),交AB于G點(diǎn),求G點(diǎn)的坐標(biāo).
          (3)如圖③所示,將△ABC沿x軸向左平移,AC邊與y軸交于一點(diǎn)P(P不同于A、C兩點(diǎn)),過P點(diǎn)作一直線與AB的延長線交于Q點(diǎn),與x軸交于M點(diǎn),且CP=BQ,在△ABC平移的過程中,線段OM的長度是否發(fā)生變化?若不變,請(qǐng)求出它的長度;若變化,確定其變化范圍.

          證明:(1)對(duì)于y=3x+3,令y=0,得3x+3=0,x=﹣1,
          ∴B(﹣1,0).
          ∵C(1,0),
          ∴OB=OC,
          ∴AO垂直平分BC,
          ∴AB=AC,
          ∴∠ABC=∠ACB;
          解:(2)∵AO⊥BC,DE⊥AC,
          ∴∠1+∠C=∠2+∠C=90°,
          ∴∠1=∠2.
          ∵AB=AC,
          ∴AO平分∠BAC,
          ∴∠2=∠3,
          ∴∠1=∠3.
          對(duì)于y=3x+3,當(dāng)x=0時(shí),y=3,
          ∴A(0,3),
          ∵D(﹣3,0),
          ∴DO=AO.
          ∵∠AOB=∠DOF=90°,
          ∴△DOF≌△AOB(ASA),
          ∴OF=OB,
          ∴F(0,1).
          設(shè)直線DE的解析式為y=kx+b,
          ,
          解得,
          ∴y=x+1,
          聯(lián)立,
          解得,
          所以,點(diǎn)G(﹣,);
          解:(3)OM的長度不會(huì)發(fā)生變化,過P點(diǎn)作PN∥AB交BC于N點(diǎn),
          則∠1=∠Q,∠ABC=∠PNC,
          ∵∠ABC=∠ACB,
          ∴∠PNC=∠PCB,
          ∴PN=PC,
          ∵CP=BQ,
          ∴PN=BQ,
          ∵∠2=∠3,
          ∴△OBM≌△PNM(AAS),
          ∴MN=BM.
          ∵PC=PN,PO⊥CN,
          ∴ON=OC,
          ∵BM+MN+ON+OC=BC,
          ∴OM=MN+ON=BC=1.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,矩形AOBP的面積為6,反比例函數(shù)y=
          kx
          的圖象經(jīng)過點(diǎn)P,那么k的值為
           
          ;直線l1:y=k1x+b與直線l2:y=k2x在同一精英家教網(wǎng)平面直角坐標(biāo)系中的圖象如圖2所示,則關(guān)于x的不等式k1x+b>k2x的解為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知如圖所示,直線L1,L2相交于A點(diǎn),請(qǐng)根據(jù)圖象寫出以交點(diǎn)坐標(biāo)為解的二元一次方程組,并求出它的解.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•海淀區(qū)一模)問題:如圖1,a、b、c、d是同一平面內(nèi)的一組等距平行線(相鄰平行線間的距離為1).畫出一個(gè)正方形ABCD,使它的頂點(diǎn)A、B、C、D分別在直線a、b、d、c上,并計(jì)算它的邊長.

          小明的思考過程:
          他利用圖1中的等距平行線構(gòu)造了3×3的正方形網(wǎng)格,得到了輔助正方形EFGH,如圖2所示,再分別找到它的四條邊的三等分點(diǎn)A、B、C、D,就可以畫出一個(gè)滿足題目要求的正方形.
          請(qǐng)回答:圖2中正方形ABCD的邊長為
          5
          5

          請(qǐng)參考小明的方法,解決下列問題:
          (1)請(qǐng)?jiān)趫D3的菱形網(wǎng)格(最小的菱形有一個(gè)內(nèi)角為60°,邊長為1)中,畫出一個(gè)等邊△ABC,使它的頂點(diǎn)A、B、C落在格點(diǎn)上,且分別在直線a、b、c上;
          (3)如圖4,l1、l2、l3是同一平面內(nèi)的三條平行線,l1、l2之間的距離是
          21
          5
          ,l2、l3之間的距離是
          21
          10
          ,等邊△ABC的三個(gè)頂點(diǎn)分別在l1、l2、l3上,直接寫出△ABC的邊長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖①所示,直線l1:y=3x+3與x軸交于B點(diǎn),與直線l2交于y軸上一點(diǎn)A,且l2與x軸的交點(diǎn)為C(1,0).
          (1)求證:∠ABC=∠ACB;
          (2)如圖②所示,過x軸上一點(diǎn)D(-3,0)作DE⊥AC于E,DE交y軸于F點(diǎn),交AB于G點(diǎn),求G點(diǎn)的坐標(biāo).
          (3)如圖③所示,將△ABC沿x軸向左平移,AC邊與y軸交于一點(diǎn)P(P不同于A、C兩點(diǎn)),過P點(diǎn)作一直線與AB的延長線交于Q點(diǎn),與x軸交于M點(diǎn),且CP=BQ,在△ABC平移的過程中,線段OM的長度是否發(fā)生變化?若不變,請(qǐng)求出它的長度;若變化,確定其變化范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,直線l1與l2,l3相交,構(gòu)成的八個(gè)角中,已知∠1=∠8,則與∠8互補(bǔ)的角有(  )

          查看答案和解析>>

          同步練習(xí)冊(cè)答案