日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖, 的中線, 是線段 上一點(diǎn)(不與點(diǎn) 重合). 于點(diǎn) , ,連結(jié)

          (1)如圖1,當(dāng)點(diǎn) 重合時,求證:四邊形 是平行四邊形;
          (2)如圖2,當(dāng)點(diǎn) 不與 重合時,(1)中的結(jié)論還成立嗎?請說明理由.
          (3)如圖3,延長 于點(diǎn) ,若 ,且 .當(dāng) , 時,求 的長.

          【答案】
          (1)

          證明:∵DE//AB,∴∠EDC=∠ABM,

          ∵CE//AM,
          ∴∠ECD=∠ADB,
          又∵AM是△ABC的中線,且D與M重合,∴BD=DC,
          ∴△ABD△EDC,
          ∴AB=ED,又∵AB//ED,
          ∴四邊形ABDE為平行四邊形。

          ∵CE//AM,
          ∴∠ECD=∠ADB,
          又∵AM是△ABC的中線,且D與M重合,∴BD=DC,
          ∴△ABD△EDC,
          ∴AB=ED,又∵AB//ED,
          ∴四邊形ABDE為平行四邊形。
          (2)

          解:結(jié)論成立,理由如下:
          過點(diǎn)M作MG//DE交EC于點(diǎn)G,
          ∵CE//AM,
          ∴四邊形DMGE為平行四邊形,
          ∴ED=GM且ED//GM,
          由(1)可得AB=GM且AB//GM,
          ∴AB=ED且AB//ED.
          ∴四邊形ABDE為平行四邊形.


          (3)

          解:取線段HC的中點(diǎn)I,連結(jié)MI,
          ∴MI是△BHC的中位線,
          ∴MI//BH,MI=BH,
          又∵BH⊥AC,且BH=AM,
          ∴MI=AM,MI⊥AC,
          ∴∠CAM=30°
          設(shè)DH=x,則AH=x,AD=2x,
          ∴AM=4+2x,∴BH=4+2x,
          由(2)已證四邊形ABDE為平行四邊形,
          ∴FD//AB,
          ∴△HDF~△HBA,
          , 即
          解得x=1±(負(fù)根不合題意,舍去)
          ∴DH=1+.

          ;解:取線段HC的中點(diǎn)I,連結(jié)MI,
          ∴MI是△BHC的中位線,
          ∴MI//BH,MI=BH,
          又∵BH⊥AC,且BH=AM,
          ∴MI=AM,MI⊥AC,
          ∴∠CAM=30°
          設(shè)DH=x,則AH=x,AD=2x,
          ∴AM=4+2x,∴BH=4+2x,
          由(2)已證四邊形ABDE為平行四邊形,
          ∴FD//AB,
          ∴△HDF~△HBA,
          , 即
          解得x=1±(負(fù)根不合題意,舍去)
          ∴DH=1+.;
          【解析】(1)由DE//AB,可得同位角相等:∠EDC=∠ABM,由CE//AM,可得同位角相等∠ECD=∠ADB,又由BD=DC,則△ABD△EDC,得到AB=ED,根據(jù)有一組對邊平行且相等,可得四邊形ABDE為平行四邊形.
          (2)過點(diǎn)M作MG//DE交EC于點(diǎn)G,則可得四邊形DMGE為平行四邊形,且ED=GM且ED//GM,由(1)可得AB=GM且AB//GM,即可證得;
          (3)在已知條件中沒有已知角的度數(shù)時,則在求角度時往特殊角30°,60°,45°的方向考慮,則要求這樣的特殊角,就去找邊的關(guān)系,構(gòu)造直角三角形,取線段HC的中點(diǎn)I,連結(jié)MI,則MI是△BHC的中位線,可得MI//BH,MI=BH,且MI⊥AC,則去找Rt△AMI中邊的關(guān)系,求出∠CAM;
          設(shè)DH=x,即可用x分別表示出AH=x,AD=2x,AM=4+2x,BH=4+2x,由△HDF~△HBA,得到對應(yīng)邊成比例,求出x的值即可;
          【考點(diǎn)精析】掌握平行四邊形的判定與性質(zhì)是解答本題的根本,需要知道若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段以對角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某公司要把240噸白砂糖運(yùn)往某市的A、B兩地,用大小兩種貨車共20輛,恰好能一次性裝完這批白砂糖.已知這兩種大小貨車的載重分別是15/輛和10/輛,運(yùn)往A地的運(yùn)費(fèi)為:大車630/輛,小車420/輛;運(yùn)往B地的運(yùn)費(fèi)為:大車750/輛,小車550/.

          (1)求大小兩種貨車各多少輛.

          (2)如果安排10輛貨車前往A地,其中調(diào)往A地的大貨車有a輛,其余貨車前往B地,填寫下表:

          前往A

          前往B

          大貨車/

          a

          小貨車/

          (3)按照上表的分配方案,若設(shè)總費(fèi)用為W,求Wa的關(guān)系式(用含a的代數(shù)式表示W)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,ABCD,∠1=2,∠3=4

          1)求證:ADBE;

          2)若∠B=3=22,求∠D的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某專賣店有,兩種商品.已知在打折前,買60件商品和30件商品用了1080元,買50件商品和10件商品用了840元;,兩種商品打相同折以后,某人買500件商品和450件商品一共比不打折少花1960元,計(jì)算打了多少折?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù) )與反比例函數(shù) )的圖象交于點(diǎn)

          (1)求這兩個函數(shù)的表達(dá)式;
          (2)在 軸上是否存在點(diǎn) ,使 為等腰三角形?若存在,求 的值;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在七年級下冊證明的一章的學(xué)習(xí)中,我們曾做過如下的實(shí)驗(yàn):

          畫∠AOB=90°,并畫∠AOB的平分線OC

          1)把三角尺的直角頂點(diǎn)落在OC的任意一點(diǎn)P上,使三角尺的兩條直角邊分別與OA、OB相交于點(diǎn)E、F(如圖①).度量PE、PF的長度,這兩條線段相等嗎?

          2)把三角尺繞點(diǎn)P旋轉(zhuǎn)(如圖②),PEPF相等嗎?請說明理由.

          3)探究:畫∠AOB=50°,并畫∠AOB的平分線OC,在OC上任取一點(diǎn)P,作∠EPF=130°EPF的兩邊分別與OA、OB相交于E、F兩點(diǎn)(如圖③),PEPF相等嗎?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】探究題:

          1三條直線相交最少有__________個交點(diǎn),最多有__________個交點(diǎn),分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補(bǔ)角的對數(shù);

          2四條直線相交,最少有__________個交點(diǎn),最多有__________個交點(diǎn)分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補(bǔ)角的對數(shù);

          3依次類推n條直線相交,最少有__________個交點(diǎn),最多有__________個交點(diǎn)對頂角有__________,鄰補(bǔ)角有__________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線ABDF,D+B=180°,

          1)求證:DEBC

          2)如果∠AMD=75°,求∠AGC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)習(xí)全等三角形的判定方法以后,我們知道已知兩邊和一角分別相等的兩個三角形不一定全等,但下列兩種情形還是成立的.

          (1)第一情形(如圖1)在△ABC和△DEF中,∠C=F=90°,AC=DF,AB=DE,則根據(jù)__________,得出△ABC≌△DEF;

          (2)第二情形(如圖2)在△ABC和△DEF中,∠C=F(C和∠F均為鈍角),AC=DF,AB=DE,求證:△ABC≌△DEF.

          查看答案和解析>>

          同步練習(xí)冊答案