日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 為了美化環(huán)境,計(jì)劃將一個(gè)邊長(zhǎng)為4米的正方形草地ABCD分成如圖所示的五塊,其中四邊形EFGH為正方形,若AE的長(zhǎng)為x米.正方形EFGH的面積為S平方米.
          (1)請(qǐng)直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
          (2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí)S最小,并求出S最小值.

          解:∵四邊形ABCD是邊長(zhǎng)為4米的正方形,
          ∴∠A=∠D=90°,AD=4米.
          ∵四邊形EFGH為正方形,
          ∴∠FEH=90°,EF=EH.
          在△AEF與△DHE中,
          ,
          ∴△AEF≌△DHE(AAS),
          ∴AE=DH=x米,AF=DE=(4-x)米,
          ∴S=EF2=AE2+AF2=x2+(4-x)2=2x2-8x+16,
          即S=2x2-8x+16;

          (2)∵S=2x2-8x+16=2(x2-4x)+16=2(x-2)2+8,
          ∴當(dāng)x=2時(shí),S有最小值8.
          故當(dāng)x為2時(shí)S最小,最小值是8.
          分析:(1)先由AAS證明△AEF≌△DHE,得出AE=DH=x米,AF=DE=(4-x)米,再根據(jù)勾股定理,求出EF2,即可得到S與x之間的函數(shù)關(guān)系式;
          (2)先將(1)中求得的函數(shù)關(guān)系式運(yùn)用配方法寫成頂點(diǎn)式,再根據(jù)二次函數(shù)的性質(zhì)即可求解.
          點(diǎn)評(píng):本題考查的是二次函數(shù)在實(shí)際生活中的應(yīng)用,難度適中,求出S與x之間的函數(shù)關(guān)系式是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•香坊區(qū)三模)為了美化環(huán)境,計(jì)劃將一個(gè)邊長(zhǎng)為4米的正方形草地ABCD分成如圖所示的五塊,其中四邊形EFGH為正方形,若AE的長(zhǎng)為x米.正方形EFGH的面積為S平方米.
          (1)請(qǐng)直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
          (2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí)S最小,并求出S最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•哈爾濱模擬)為了美化環(huán)境,計(jì)劃將一個(gè)邊長(zhǎng)為4米的菱形草地ABCD分割成如圖所示的四塊,其中四邊形AEPM和四邊形NPFC均為菱形,且∠A=120°,若AE的長(zhǎng)為x米,四邊形BEPN和四邊形DMPF的面積和為S平方米.
          (1)請(qǐng)直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
          (2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí)S最大,并求出最大值.
          [參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=-
          b
          2a
          時(shí),y最大(。┲=
          4ac-b2
          4a
          ].

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          為了美化環(huán)境,計(jì)劃將一個(gè)邊長(zhǎng)為4米的菱形草地ABCD分割成如圖所示的四塊,其中四邊形AEPM和四邊形NPFC均為菱形,且∠A=120°,若AE的長(zhǎng)為x米,四邊形BEPN和四邊形DMPF的面積和為S平方米.
          (1)請(qǐng)直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
          (2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí)S最大,并求出最大值.
          [參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=-數(shù)學(xué)公式時(shí),y最大(。┲=數(shù)學(xué)公式].

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2012年黑龍江省哈爾濱市中考調(diào)研測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

          為了美化環(huán)境,計(jì)劃將一個(gè)邊長(zhǎng)為4米的菱形草地ABCD分割成如圖所示的四塊,其中四邊形AEPM和四邊形NPFC均為菱形,且∠A=120°,若AE的長(zhǎng)為x米,四邊形BEPN和四邊形DMPF的面積和為S平方米.
          (1)請(qǐng)直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
          (2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí)S最大,并求出最大值.
          [參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=-時(shí),y最大(。┲=].

          查看答案和解析>>

          同步練習(xí)冊(cè)答案