日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,在Rt△ABC中,∠C=90°,∠A≠∠B.
          (1)畫出△ABC關(guān)于直線AC對稱的△AGC;(不要求寫畫法)
          (2)在AG邊上找一點D,使得BD的中點E滿足CE=AD.請利用直尺和圓規(guī)作出圖形,并寫出你的簡要作圖步驟;(只能利用直尺畫直線不能測量線段長度)
          (3)在(1)、(2)和未添加輔助線及其他字母的條件下,直接寫出圖中與∠ABC相等的角,要求該角以C點為頂點.

          【答案】分析:(1)延長BC到G,使CG=BG,然后連接AG即可;
          (2)作AC的垂直平分線,交AC于F,連接BF并延長交AG于點D,再作BD的垂直平分線交BD于點E,連接CE,根據(jù)三角形的中位線定理,CE∥CD,然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠DAC=∠ECF,∠ADF=∠CEF,然后利用“角角邊”可以證明△ADF和△CEF全等,根據(jù)全等三角形對應(yīng)邊相等可知CE=AD;
          (3)根據(jù)軸對稱性∠BAC=∠G,根據(jù)兩直線平行,同位角相等可得∠G=∠BCE,所以與∠ABC相等且以C為頂點的角是∠BCE.
          解答:解:(1)所畫△AGC見圖. …(1分)

          (2)所畫圖形見圖.
          作圖簡要步驟如下:
          (1)作AC的垂直平分線,交AC于F點.…(2分)
          (2)連接BF并延長,交AG于D點. …(3分)
          (3)作BD的垂直平分線,交BD于E點,連接CE.
          則D點和E點為所求.…(4分)

          (3)在(1)、(2)和未添加輔助線及其他字母的條件下,圖中以C點為頂點,且與∠ABC相等的角的是∠BCE. …(5分)
          點評:本題考查了復(fù)雜作圖,主要利用了軸對稱的性質(zhì),全等三角的判定與性質(zhì),熟記性質(zhì)與判定并掌握線段垂直平分線的作法是解題的關(guān)鍵,本題難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,過點B作BD∥AC,且BD=2AC,連接AD.試判斷△ABD的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1997•陜西)已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•豐臺區(qū)一模)已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連結(jié)DE.
          (1)求證:DE與⊙O相切;
          (2)連結(jié)OE,若cos∠BAD=
          3
          5
          ,BE=
          14
          3
          ,求OE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
          (1)求出cosB的值;
          (2)用含y的代數(shù)式表示AE;
          (3)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
          (4)設(shè)四邊形DECF的面積為S,求出S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,如圖,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜邊AB上的高CD.

          查看答案和解析>>

          同步練習(xí)冊答案