日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 1.從不同角度計算圖中邊長為c的正方形的面積,你得到了什么?發(fā)現(xiàn)了什么?與勾股定理有關(guān)嗎?試試看.

          2.觀察勾股定理a2+b2=c2中的c2、a2和b2,你想到了什么?

          3.利用上圖中四個完全相同的直角三角形,你還能拼出與c2有關(guān)的圖形嗎?能利用這個圖形驗證勾股定理嗎?

          4.用上圖中的四個完全相同的直角三角形可以拼成如圖Ⅰ所示的圖形,這個圖形被稱為“弦圖”,最早是由三國時期的數(shù)學家趙爽在為《周髀算經(jīng)》作注時給出的.觀察圖Ⅰ,你能驗證c2=a2+b2嗎?把你的驗證過程寫下來,并與同伴進行交流.

          2002年世界數(shù)學家大會(ICM-2002)在北京召開.圖Ⅱ是此屆大會的會標,其中央圖案正是經(jīng)過藝術(shù)處理的“弦圖”.它既標志著中國古代的數(shù)學成就,又像一只轉(zhuǎn)動著的風車,歡迎來自世界各地的數(shù)學家們.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          利用“等積”計算或說理是一種很巧妙的方法,就是一個面積從兩個不同的角度表示.如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的長.

          解題思路:利用勾股定理易得AB=5利用S△ABC=
          1
          2
          BC×AC=
          1
          2
          AB×CD
          ,可得到CD=2.4
          請你利用上述方法解答下面問題:
          (1)如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的長.
          (2)如圖乙,△ABC是邊長為2的等邊三角形,點D是BC邊上的任意一點,DE⊥AB于E點,DF⊥AC于F點,求DE+DF的值
          分析:①利用備用圖計算等邊三角形ABC高線的長度
          ②連接AD,利用S△ABC=S△ADB+S△ADC
          解:

          查看答案和解析>>

          科目:初中數(shù)學 來源:2012-2013學年浙江寧波地八年級第一次質(zhì)量評估數(shù)學試卷(帶解析) 題型:解答題

          利用“等積”計算或說理是一種很巧妙的方法, 就是一個面積從兩個不同的角度表示。如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的長。
          解題思路:利用勾股定理易得AB=5利用
          ,可得到CD=2.4
          請你利用上述方法解答下面問題:
          (1)  如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的長。

          (2)如圖乙,△ABC是邊長為2的等邊三角形,點D是BC邊上的
          任意一點,DE⊥AB于E點,DF⊥AC于F點,求DE+DF的值

          查看答案和解析>>

          科目:初中數(shù)學 來源:2012-2013學年浙江寧波地八年級第一次質(zhì)量評估數(shù)學試卷(解析版) 題型:解答題

          利用“等積”計算或說理是一種很巧妙的方法, 就是一個面積從兩個不同的角度表示。如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的長。

          解題思路:利用勾股定理易得AB=5利用

          ,可得到CD=2.4

          請你利用上述方法解答下面問題:

          (1)   如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的長。

          (2)如圖乙,△ABC是邊長為2的等邊三角形,點D是BC邊上的

          任意一點,DE⊥AB于E點,DF⊥AC于F點,求DE+DF的值

           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          利用“等積”計算或說理是一種很巧妙的方法,就是一個面積從兩個不同的角度表示.如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的長.
          作業(yè)寶
          解題思路:利用勾股定理易得AB=5利用數(shù)學公式,可得到CD=2.4
          請你利用上述方法解答下面問題:
          (1)如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的長.
          (2)如圖乙,△ABC是邊長為2的等邊三角形,點D是BC邊上的任意一點,DE⊥AB于E點,DF⊥AC于F點,求DE+DF的值
          分析:①利用備用圖計算等邊三角形ABC高線的長度
          ②連接AD,利用S△ABC=S△ADB+S△ADC
          解:

          查看答案和解析>>

          同步練習冊答案