日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知⊙O和⊙O′相交于A、B兩點,過點A作⊙O′的切線交⊙O于點C,過點B作兩圓的割線分別交⊙O、⊙O′于E、F,EF精英家教網(wǎng)與AC相交于點P.
          (1)求證:PA•PE=PC•PF;
          (2)求證:
          PE2
          PC2
          =
          PF
          PB
          ;
          (3)當⊙O與⊙O′為等圓時,且PC:CE:EP=3:4:5時,求△PEC與△FAP的面積的比值.
          分析:(1)連接AB,根據(jù)弦切角定理和圓周角定理的推論得到∠CAB=∠F,∠CAB=∠E,則∠F=∠E,根據(jù)內(nèi)錯角相等,得到AF∥CE,再根據(jù)平行線分線段成比例定理進行證明;
          (2)利用(1)的比例式,兩邊同平方,再根據(jù)切割線定理進行等量代換即可;
          (3)要求兩個三角形的面積比,根據(jù)(1)知:兩個三角形相似.所以只需求得它們的一組對應邊的比,根據(jù)所給的線段的比值,結(jié)合勾股定理的逆定理發(fā)現(xiàn)Rt△PCE,連接AE,AE即是直徑.又根據(jù)平行線的性質(zhì)得到∠PAF=90°,則AF是圓的直徑.根據(jù)勾股定理得到x與y的比值,從而得到三角形的面積比.
          解答:(1)證明:連接AB,
          ∵CA切⊙O'于A,
          ∴∠CAB=∠F.精英家教網(wǎng)
          ∵∠CAB=∠E,
          ∴∠E=∠F.
          ∴AF∥CE.
          PE
          PF
          =
          PC
          PA

          ∴PA•PE=PC•PF.

          (2)證明:∵
          PE
          PF
          =
          PC
          PA
          ,
          PE2
          PF2
          =
          PC2
          PA2

          PE2
          PC2
          =
          PF2
          PA2

          再根據(jù)切割線定理,得PA2=PB•PF,
          PE2
          PC2
          =
          PF
          PB


          (3)解:連接AE,由(1)知△PEC∽△PFA,
          而PC:CE:EP=3:4:5,
          ∴PA:FA:PF=3:4:5.
          設PC=3x,CE=4x,EP=5x,PA=3y,F(xiàn)A=4y,PF=5y,
          ∴EP2=PC2+CE2,PF2=PA2+FA2
          ∴∠C=∠CAF=90°.
          ∴AE為⊙O的直徑,AF為⊙O'的直徑.
          ∵⊙O與⊙O'等圓,
          ∴AE=AF=4y.
          ∵AC2+CE2=AE2
          ∴(3x+3y)2+(4x)2=(4y)2即25x2+18xy-7y2=0,
          ∴(25x-7y)(x+y)=0,
          x
          y
          =
          7
          25

          S△ECPS△FAP=
          x2
          y2
          =
          49
          625
          點評:此題綜合運用了切線的性質(zhì)、圓周角定理的推論、切割線定理以及相似三角形的性質(zhì)和判定,難度比較大,綜合性比較強.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC和△CDE都是等邊三角形,問:線段AE、BD的長度有什么關系?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          22、如圖,已知△ABC和直線l,畫出△ABC關于直線l的對稱圖形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          26、如圖,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;
          (1)請說明∠EAB=∠FAC的理由;
          (2)△ABC可以經(jīng)過圖形的變換得到△AEF,請你描述這個變換;
          (3)求∠AMB的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          20、如圖,已知△ABC和△DEF,∠A=∠D=90°,且△ABC與△DEF不相似,問是否存在某種直線分割,使△ABC所分割成的兩個三角形與△DEF所分割成的兩個三角形分別對應相似?
          (1)如果存在,請你設計出分割方案,并給出證明;如果不存在,請簡要說明理由;
          (2)這樣的分割是唯一的嗎?若還有,請再設計出一種.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知∠ABC和射線BD上一點P(點P與點B不重合),且點P到BA、BC的距離為PE、PF.
          (1)若∠EBP=40°,∠FBP=20°,PB=m,試比較PE、PF的大;
          (2)若∠EBP=α,∠FBP=β,α,β都是銳角,且α>β.試判斷PE、PF的大小,并給出證明.

          查看答案和解析>>

          同步練習冊答案