日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】二次函數(shù)

          (1)寫出函數(shù)圖象的開口方向、頂點坐標(biāo)和對稱軸.

          (2)判斷點是否在該函數(shù)圖象上,并說明理由.

          (3)求出以該拋物線與兩坐標(biāo)軸的交點為頂點的三角形的面積.

          【答案】(1)開口向下,對稱軸為直線,頂點為;(2)不在函數(shù)圖象上,理由詳見解析;(3) 12.

          【解析】

          1)先把拋物線解析式配成頂點式得到,然后根據(jù)二次函數(shù)的性質(zhì)寫出開口方向,對稱軸方程,頂點坐標(biāo);

          2)將代入函數(shù)解析式求出對應(yīng)的y即可判斷;

          3)確定拋物線與軸的交點坐標(biāo)為,然后根據(jù)三角形面積公式求解.

          解:(1)解:(1

          拋物線開口向下;

          拋物線對稱軸方程為,頂點坐標(biāo)

          開口向下,對稱軸為直線,頂點為

          2)不在函數(shù)圖象上.

          理由:當(dāng)時,

          所以點不在函數(shù)圖象上.

          3)令,得,解得,,

          所以拋物線與軸的交點坐標(biāo)為,

          當(dāng)x=0時,y=6.

          拋物線與軸交于點,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某貨車銷售公司,分別試銷售兩種型號貨車各一個月,并從中選擇一種長期銷售,設(shè)每月銷售量為x輛若銷售甲型貨車,每月銷售的利潤為y1(萬元),已知每輛甲型貨車的利潤為(m+6)萬元,(m是常數(shù),9m11),每月還需支出其他費用8萬元,受條件限制每月最多能銷售甲型貨車25輛;若銷售乙型貨車,每月的利潤y2(萬元)x的函數(shù)關(guān)系式為y2=ax2+bx-25,且當(dāng)x10時,y220,當(dāng)x20時,y255,受條件限制每月最多能銷售乙型貨車40輛.

          (1)分別求出y1、y2x的函數(shù)關(guān)系式,并確定x的取值范范圍;

          (2)分別求出銷售這兩種貨車的最大月利潤;(最大利潤能求值的求值,不能求值的用式子表示)

          (3)為獲得最大月利潤,該公司應(yīng)該選擇銷售哪種貨車?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,二次函數(shù)yax23ax+c的圖象與x軸交于點AB,與y軸交于點c直線y=﹣x+4經(jīng)過點B、C

          1)求拋物線的表達(dá)式;

          2)過點A的直線ykx+k交拋物線于點M,交直線BC于點N,連接AC,當(dāng)直線ykx+k平分ABC的面積,求點M的坐標(biāo);

          3)如圖2,把拋物線位于x軸上方的圖象沿x軸翻折,當(dāng)直線ykx+k與翻折后的整個圖象只有三個交點時,求k的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線yx2+bx+cx軸交于A(﹣1,0),B20)兩點,與y軸交于點C

          (1)求該拋物線的解析式及點C的坐標(biāo);

          (2)直線y=﹣x2與該拋物線在第四象限內(nèi)交于點D,與x軸交于點F,連接AC,CD,線段AC與線段DF交于點G,求證:AGF≌△CGD;

          (3)直線ymm0)與該拋物線的交點為M,N(點M在點N的左側(cè)),點M關(guān)于y軸的對稱點為點M,點H的坐標(biāo)為(1,0),若四邊形NHOM的面積為,求點HOM的距離d

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.

          (1)請直接寫出D點的坐標(biāo).

          (2)求二次函數(shù)的解析式.

          (3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)yax2+4ax+4a+3a≠0).

          1)求二次函數(shù)圖象的頂點坐標(biāo);

          2)若a=﹣,求二次函數(shù)圖象與x軸的交點坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD,BAD=60°,AB為直徑的⊙O分別交邊AD和對角線BD于點E、F,連接EF并延長交邊BC于點G,連接BE。

          (1)求證:AE=DE;

          (2)若⊙O的半徑為2,EG的長

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,D、E分別是ABAC的中點,若ABC的面積為SABC36cm2,則梯形EDBC的面積SEDBC為( 。

          A.9B.18C.27D.30

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在ABC中,ABAC,∠BAC90°,DE分別是AB、AC邊的中點.將ABC繞點A順時針旋轉(zhuǎn)a角(a180°),得到AB′C′(如圖2),連接DB',EC'

          1)探究DB'EC'的數(shù)量關(guān)系,并結(jié)合圖2給予證明;

          2)填空:

          ①當(dāng)旋轉(zhuǎn)角α的度數(shù)為_____時,則DB'AE

          ②在旋轉(zhuǎn)過程中,當(dāng)點B'D,E在一條直線上,且AD時,此時EC′的長為_____

          查看答案和解析>>

          同步練習(xí)冊答案