日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 13、如圖,矩形OABC的頂點O為坐標(biāo)原點,點A在x軸上,點B的坐標(biāo)為(2,1).如果將矩形0ABC繞點O旋轉(zhuǎn)180°旋轉(zhuǎn)后的圖形為矩形OA1B1C1,那么點B1的坐標(biāo)為( 。
          分析:將矩形0ABC繞點O順時針旋轉(zhuǎn)180°,就是把矩形0ABC上的每一個點繞點O順時針旋轉(zhuǎn)180°,求點B1的坐標(biāo)即是點B關(guān)于點O的對稱點B 1點的坐標(biāo)得出答案即可.
          解答:解:∵點B的坐標(biāo)是(2,1),
          ∴點B關(guān)于點O的對稱點B 1點的坐標(biāo)是(-2,-1).
          故選C.
          點評:此題主要考查了旋轉(zhuǎn)變換,本題實際就是一個關(guān)于原點成中心對稱的問題,要根據(jù)中心對稱的定義,充分利用網(wǎng)格的輔助解題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,矩形OABC的頂點0、B的坐標(biāo)分別是O(0,0)、B(8,4),頂點A在x軸上,頂點C在y軸上,把△OAB沿OB翻折,使點A落在點D的位置,BD與OA交于E.
          ①求證:OE=EB;
          ②求OE、DE的長度;
          ③求直線BD的解析.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,矩形OABC的邊OA、OC在坐標(biāo)軸上,經(jīng)過點B的雙曲線的解析式為y=
          k
          x
          (x
          <0),M為OC上一點,且CM=2OM,N為BC的中點,BM與AN交于點E,若四邊形EMCN的面積為
          13
          4
          ,則k=
           

          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知如圖,矩形OABC的長OA=
          3
          ,寬OC=1,將△AOC沿AC翻折得△APC.
          (1)求∠PCB的度數(shù);
          (2)若P,A兩點在拋物線y=-
          4
          3
          x2+bx+c上,求b,c的值,并說明點C在此拋物線上;
          (3)(2)中的拋物線與矩形OABC邊CB相交于點D,與x軸相交于另外一點E,若點M是x軸上的點,N是y軸上的點,以點E、M、D、N為頂點的四邊形是平行四邊形,試求點M、N的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•樊城區(qū)模擬)已知如圖,矩形OABC的長OA=2
          3
          ,寬OC=2,將△AOC沿AC翻折得△AFC.
          (1)求點F的坐標(biāo);
          (2)求過A、F、C三點的拋物線解析式;
          (3)在拋物線上是否存在一點P,使得△ACP為以A為直角頂點的直角三角形?若存在,求出P點坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,矩形OABC的頂點坐標(biāo)分別是(0,0),(4,0),(4,1),(0,1),在矩形OABC的內(nèi)部任取一點(x,y),則x<y的概率是
           

          查看答案和解析>>

          同步練習(xí)冊答案