日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在城市繁華中心地帶的商鋪內(nèi),放置統(tǒng)一尺寸大小的“格子柜”,任何人只需每月支付一定的費用,就可以租用一個柜子寄賣自己的物品,相當于擁有自己的一個“迷你實體店”,“格子店”以投入少、易操作為特點,吸引著眾多淘寶店家.
          張阿姨有格子柜40個,當每個格子柜的月租金為270元時,恰好全部租出.在此基礎(chǔ)上,當每個格子柜的月租金提高10元時,格子柜就少租出一個,且沒有租出的一個格子柜每月需支出費用20元,設(shè)每個格子柜的月租金為x(x≥270)元,月收益為y元(總收益=格子柜租金收入-未租出格子柜支出費用)
          (1)求y關(guān)于x的函數(shù)關(guān)系;
          (2)當月租金分別為300元和350元時,張阿姨的月收益分別是多少元?可以出租多少個格子柜?請你簡單說明理由;
          (3)若張阿姨某月出租格子柜的總收益為11100元,則她這個月出租了多少個格子柜?
          (1)∵未租出的格子柜為
          x-270
          10
          套,
          所有未租出格子柜的支出費用為(2x-540)元;
          ∴y=(40-
          x-270
          10
          )x-(2x-540)
          =-
          1
          10
          x2+65x+540;

          (2)當月租金為300元時,張阿姨的月收益為11040元,此時租出格子柜37個;
          當月租金為350元時,張阿姨的月收益為11040元,此時租出格子柜32個
          ∵出租37個和32個格子柜獲得同樣的收益,如果考慮減少格子柜的磨損,
          應(yīng)該選擇出租32個;如果考慮市場占有率,應(yīng)該選擇37個;

          (3)∵y=-
          1
          10
          x2+65x+540,
          ∴當y=11100時,-
          1
          10
          x2+65x+540=11100,
          (x-325)2=25
          x1=330,x2=320,
          ∴當x1=330時,租出去格子柜40-
          x-270
          10
          =34(個).
          當x2=320時,租出去格子柜40-
          x-270
          10
          =35(個).
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖①,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為M(2,-3),且經(jīng)過點A(0,1),直線y=x+1與拋物線交于A點和B點.
          (1)求這條拋物線的解析式;
          (2)求△ABM的面積;
          (3)如圖②,點P是x軸上的一動點,請?zhí)剿鳎?br>①過點P作PQAB,交BM于點Q,連接AQ,AP,當△APQ的面積最大時,求P的坐標.
          ②是否存在點P,使得△PAB是直角三角形?若存在,求出所有的點P坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A、B、C三點.
          (1)觀察圖象,寫出A、B、C三點的坐標,并求出拋物線解析式;
          (2)求此拋物線的頂點坐標和對稱軸;
          (3)觀察圖象,當x取何值時,y<0,y=0,y>0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,在平面直角坐標系中,等腰直角三角形OMN的斜邊ON在x軸上,頂點M的坐標為(3,3),MH為斜邊上的高.拋物線C:y=-
          1
          4
          x2+nx
          與直線y=
          1
          2
          x
          及過N點垂直于x軸的直線交于點D.點P(m,0)是x軸上一動點,過點P作y軸的平行線,交射線OM于點E.設(shè)以M、E、H、N為頂點的四邊形的面積為S.
          (1)直接寫出點D的坐標及n的值;
          (2)判斷拋物線C的頂點是否在直線OM上?并說明理由;
          (3)當m≠3時,求S與m的函數(shù)關(guān)系式;
          (4)如圖2,設(shè)直線PE交射線OD于R,交拋物線C于點Q,以RQ為一邊,在RQ的右側(cè)作矩形RQFG,其中RG=
          3
          2
          ,直接寫出矩形RQFG與等腰直角三角形OMN重疊部分為軸對稱圖形時m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,頂點為A的拋物線y=a(x+2)2-4交x軸于點B(1,0),連接AB,過原點O作射線OMAB,過點A作ADx軸交OM于點D,點C為拋物線與x軸的另一個交點,連接CD.
          (1)求拋物線的解析式(關(guān)系式);
          (2)求點A,B所在的直線的解析式(關(guān)系式);
          (3)若動點P從點O出發(fā),以每秒1個單位長度的速度沿著射線OM運動,設(shè)點P運動的時間為t秒,問:當t為何值時,四邊形ABOP分別為平行四邊形?等腰梯形?
          (4)若動點P從點O出發(fā),以每秒1個單位長度的速度沿線段OD向點D運動,同時動點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CO向點O運動,當其中一個點停止運動時另一個點也隨之停止運動.設(shè)它們的運動時間為t秒,連接PQ.問:當t為何值時,四邊形CDPQ的面積最。坎⑶蟠藭rPQ的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標系中,直線y=-2x+42交x軸于點A,交直線y=x于點B,拋物線y=ax2-2x+c分別交線段AB、OB于點C、D,點C和點D的橫坐標分別為16和4,點P在這條拋物線上.
          (1)求點C、D的縱坐標.
          (2)求a、c的值.
          (3)若Q為線段OB上一點,P、Q兩點的縱坐標都為5,求線段PQ的長.
          (4)若Q為線段OB或線段AB上一點,PQ⊥x軸,設(shè)P、Q兩點間的距離為d(d>0),點Q的橫坐標為m,直接寫出d隨m的增大而減小時m的取值范圍.[參考公式:二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點坐標為(-
          b
          2a
          ,
          4ac-b2
          4a
          )].

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知二次函數(shù)y=
          1
          2
          x2+bx+c的圖象經(jīng)過點A(-3,6),并且與x軸交于點B(-1,0)和點C,頂點為P.
          (1)求這個二次函數(shù)解析式;
          (2)設(shè)D為線段OC上的點,滿足∠DPC=∠BAC,求點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在梯形ABCD中,ABCD,AB=7,CD=1,AD=BC=5.點M,N分別在邊AD,BC上運動,并保持MNAB,ME⊥AB,NF⊥AB,垂足分別為E,F(xiàn).
          (1)求梯形ABCD的面積;
          (2)求四邊形MEFN面積的最大值;
          (3)試判斷四邊形MEFN能否為正方形?若能,求出正方形MEFN的面積;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,頂點為D的拋物線y=x2+bx-3與x軸相交于A,B兩點,與y軸相交于點C,連接BC,已知△BOC是等腰三角形.
          (1)求點B的坐標及拋物線y=x2+bx-3的解析式;
          (2)求四邊形ACDB的面積;
          (3)若點E(x,y)是y軸右側(cè)的拋物線上不同于點B的任意一點,設(shè)以A,B,C,E為頂點的四邊形的面積為S.
          ①求S與x之間的函數(shù)關(guān)系式.
          ②若以A,B,C,E為頂點的四邊形與四邊形ACDB的面積相等,求點E的坐標.

          查看答案和解析>>

          同步練習冊答案